|x+6|=x
giải pt có chứa dấu gttđ
|2x-1|<2x-3
Giải bất pt chứa dấu gttđ
Lớp 10
Giải pt:
x^2 +gttđ của (x-1) = gttđ của x
( gttđ là giá trị tuyệt đối)
Giải pt chứa ẩn dưới dấu căn: 10\(x\)+15=2\(x^{2}\)+\(\sqrt{x^2-5x-6}\)
giúp mình với
\(ĐK:x^2-5x-6\ge0\\ PT\Leftrightarrow\sqrt{x^2-5x-6}+2\left(x^2-5x-6\right)=0\\ \Leftrightarrow\sqrt{x^2-5x-6}\left(1+2\sqrt{x^2-5x-6}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2-5x-6=0\left(tmĐK\right)\\2\sqrt{x^2-5x-6}=-1\left(vn\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=-1\end{matrix}\right.\)
cho biểu thức:A=|x+5|+2-x. viết biểu thức a không chứa dấu GTTĐ
Nếu x + 5 > 0 \(\Leftrightarrow\) x > - 5 thì
A = x + 5 + 2 - x = 7
Nếu x + 5 < 0 \(\Leftrightarrow\) x < - 5 thì
A = - x - 5 + 2 - x = -2x - 3
Giải ptrinh chứa dấu GTTĐ
a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)
b, \(\sqrt{x-2\sqrt{x}+1}-\sqrt{x-4\sqrt{x}+4}=10\)
a.
\(\sqrt{x+4\sqrt{x}+4=5x+2}\)
\(\Rightarrow\sqrt{\left(\sqrt{x}\right)^2+2.2.\sqrt{x}+2^2}=5x+2\)
\(\Rightarrow\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)
\(\Rightarrow\sqrt{x}+2=5x+2\)
\(\Rightarrow\sqrt{x}=5x\)
\(\Rightarrow x=25x^2\)
\(\Rightarrow x=0\)
Vậy nghiệm của phương trình là x = 0
b)
\(\sqrt{x-2\sqrt{x}+1}-\sqrt{x-4\sqrt{x}+4}=10\)
\(\Rightarrow\sqrt{\left(\sqrt{x}-1\right)^2}-\sqrt{\left(\sqrt{x}-2\right)^2=10}\)
\(\Rightarrow\sqrt{x}-1-\sqrt{x}+2=10\)
\(\Rightarrow1=10\) (Vô lí)
Vậy phương trình đã cho vô nghiệm
Tìm GTNN của bt có chứa dấu GTTĐ
| x+2 | +3
A = \(\left|x+2\right|+3\)
Ta có : \(\left|x+2\right|\ge0\) với mọi x
\(\Rightarrow\left|x+2\right|+3\ge3\) với mọi x
Dấu = xảy ra \(\Leftrightarrow\left|x+2\right|=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
Vậy \(Min_A=3\Leftrightarrow x=-2\)
Giải Phương trình chứa dấu GTTĐ :
l 4x - 3m l = 2x + m
| 4x - 3m | = 2x + m
=> 4x - 3m \(\in\){ 2x + m; -2x - m }
+) 4x - 3m = 2x + m +) 4x - 3m = -2x - m
4x - 2x = m + 3m 4x + 2x = -m + 3m
2x = 4m 6x = 2m
Mới học lớp 7 nên mình chưa biết " giải phương trình " là gì, mình chỉ biết đến đây thôi :)
cho pt x2-x+m-2=0
tìm m để phương trình có nghiệm x1 x2 sao cho gttđ của x1 + gttđ của x2 =2
Giải pt [x2-1]+[x2-4]= [x2-2x+4]
[ ] là GTTĐ nhé các bạn