cho tỉ lệ thức a/b=c/d chứng minh a+2011c/c+2011d=a-2011c/c-2011d
ho tỉ lệ thức a/b=c/d chứng minh a+2011c/c+2011d=a-2011c/c-2011d
Cho \(\frac{a}{b}=\frac{c}{d}\).Chứng minh \(\frac{a+2011c}{b+2011d}=\frac{a-2011c}{b-2011d}\)
\(\frac{a}{b}=\frac{c}{d}=\frac{2011c}{2011d}\)
=> \(\frac{a}{b}=\frac{2011c}{2011d}=\frac{a+2011c}{b+2011d}=\frac{a-2011c}{b-2011d}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{a+2011c}{b+2011d}=\frac{a-2011c}{b-2011d}\) (Đpcm)
tích mình trước rồi trả lời mình biết bài này
Cho \(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}\) (a,b,c,d>0)
Tính \(A=\frac{2011a-2011b}{c+d}+\frac{2011b-2011c}{a+d}+\frac{2011c-2011d}{a+b}+\frac{2011d-2011a}{b+c}\)
Ta có: \(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}\) (ĐK: a,b,c,d > 0)
Theo đề bài, suy ra: \(\frac{2b}{a}=\frac{2c}{b}=\frac{2d}{c}=\frac{2a}{d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)
\(\Rightarrow a=b=c=d\)
\(\Rightarrow\frac{2011a-2010a}{2a}.4=\frac{a}{2a}.4=2\) (Thay b, c ,d = a , Vì a = b =c =d)
Trả lời nhanh giúp mik nha !
1) x + 2y / 4= 4x- z / 2= z + y / 5 và x- y=7. Tìm x, y, z trong dãy tỉ số bằng nhau.
2) tìm giá trị lớn nhất của A:
A = 144 / 272 - |x+ 5 / 927|
3. Cho: a / b= c /d
Cm: a + 2011c / b+ 2011d= a-2011c / b- 2011d
Mọi người ơi giúp mik nhanh lên, mai mik KT rồi, mik lo quá ak, nghe nói là đê khó lắm!!!
cho a , b , c , d > 0 thỏa mãn : a/2b = b/2c = c/2d = d/2a
tính A = 2011a - 2010b / c+d + 2011b -2010c / d+a + 2011c- 2010d / a+b + 2011d
Vì a,b,c,d>0 ta áp dụng t/c dãy tỉ số bằng nhau:
`a/(2b)=b/(2c)=c/(2d)=d/(2a)=(a+b+c+d)/(2a+2b+2c+2d)=1/2`
`=>a/(2b)=1/2=>a=b`
Tương tự ta có:`b=c,c=d,d=a`
`=>a=b=c=d`
`=>A=(2011a-2010a)/(a+a)+(2011a-2010a)/(a+a)+(2011a-2010a)/(a+a)+(2011a-2010a)/(a+a)=1/2+1/2+1/2+1/2=2`
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}=\dfrac{a+b+c+d}{2b+2c+2d+2a}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{a}{2b}=\dfrac{1}{2}\\\dfrac{b}{2c}=\dfrac{1}{2}\\\dfrac{c}{2d}=\dfrac{1}{2}\\\dfrac{d}{2a}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\Leftrightarrow a=b=c=d\)
Ta có: \(A=\dfrac{2011a-2010b}{c+d}+\dfrac{2011b-2010c}{d+a}+\dfrac{2011c-2010d}{a+b}+\dfrac{2011d-2010a}{b+c}\)
\(=\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}=2\)
Cho:\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}\left(a,b,c,d>0\right)tinh:\frac{2011a-2010b}{c+d}=\frac{2011b-2010a}{c+d}=\frac{2011c+2011d}{a+b}=\frac{2011d-2010a}{c+dc=d}\)
cho a/2b = b/2c = c/2d = d/2a (a,b,c,d>0) .Tinh A = 2011a-2010b/c+d + 2011b-2010c/a+d + 2011c-2010d/a+b + 2011d-2010a/b+c
\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2a+2b+2c+2d}=\frac{a+b+c+d}{2\left(a+b+c+d\right)}=\frac{1}{2}\)
\(\Rightarrow a=\frac{2b}{2}=b\) \(c=\frac{2d}{2}=d\)
\(b=\frac{2c}{2}=c\) \(d=\frac{2a}{2}=a\)
\(\Rightarrow a=b=c=d\)
Ta có: \(A=\frac{2011a-2010b}{c+d}+\frac{2011b-2010c}{a+d}+\frac{2011c-2010d}{a+b}+\frac{2011d-2010a}{b+c}\)
\(=\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}\)
\(=\frac{4a}{2a}=2\)
A ₫ 2 day ban so yeoung cheing nhe. Cac ban kcho mik nha
222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222 do nhà bạn gì owi,
cho a/2b = b/2c = c/2d = d/2a (a,b,c,d>0) .Tinh A = 2011a-2010b/c+d + 2011b-2010c/a+d + 2011c-2010d/a+b + 2011d-2010a/b+c
Cho \(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}\left(a,b,c,d>0\right)\)
Tính: \(\dfrac{2011a-2010b}{c+d}+\dfrac{2011b-2010c}{a+d}+\dfrac{2011c-2010d}{a+b}+\dfrac{2011d-2010a}{b+c}\)
Từ \(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}\Rightarrow\dfrac{1}{2}.\dfrac{a}{b}=\dfrac{1}{2}.\dfrac{b}{c}=\dfrac{1}{2}.\dfrac{c}{d}=\dfrac{1}{2}.\dfrac{d}{a}\)
⇒ \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{a+b+c+d}{b+c+d+a}=1\)
⇒ \(a=b=c=d\)
Thay b = a ; c = a ; d = a vào biểu thức A ta có:
\(A=\dfrac{2011a-2010a}{2a}+\dfrac{2011a-2010a}{2a}+\dfrac{2011a-2010a}{2a}+\dfrac{2011a-2010a}{2a}\)
\(A=\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}\)
\(A=\dfrac{1}{2}.4=2\)
Vậy A = 2
\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}=\dfrac{a+b+c+d}{2a+2b+2c+2d}=\dfrac{1}{2}\)
=>\(\dfrac{a}{2b}=\dfrac{1}{2}\)=>2a=2b =>a=b
\(\dfrac{b}{2c}=\dfrac{1}{2}\)=>2b=2c =>b=c
\(\dfrac{c}{2d}=\dfrac{1}{2}\)=>2c=2d =>c=d
\(\dfrac{d}{2a}=\dfrac{1}{2}\)=>2d=2a =>d=a
=>a=b=c=d.
*\(\dfrac{2011a-2010b}{c+d}+\dfrac{2011b-2010c}{a+d}+\dfrac{2011c-2010d}{a+b}+\dfrac{2011d-2010a}{b+c}\)
=\(\dfrac{2011a-2010a}{a+a}+\dfrac{2011a-2010a}{a+a}+\dfrac{2011a-2010d}{a+a}+\dfrac{2011a-2010a}{a+a}\)
=\(\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}\)=2