Tam giác ABC cân tại A có AB=5cm; BC=8cm. Gọi G là trọng tâm của tam giác đó thì độ dài của AG sẽ là bao nhiêu?
A. AG = 1cm
B. AG = 2cm
C. AG = 3cm
D. AG = 4cm
giúp mình với ạ
Cho tam giác ABC cân tại A có AB=AC=5cm, BC=6cm. Tia phân giác B cắt AC tại M. Phân giác góc C cắt AB tại N
a) ANC đồng dạng tam giác AMB
a: Xét ΔANC và ΔAMB có
góc ACN=góc ABM
góc NAC chung
=>ΔANC đồng dạng với ΔAMB
Cho tam giác ABC vuông cân tại A có AB=5cm. Tính các cạnh còn lại của tam giác. Giúp mik với nha
/\ABC vuông cân tại A =>AB = AC = 5 cm
Ap dụng định lý pytago vào tam giác vuông ABC => AB^2 + AC^2 = BC^2
= 5^2 + 5^2 = 50
=> BC = √50 cm
1) Cho tam giác ABC cân tại A có AH là đường cao
a) Biết AB=8cm, BC=4cm. Tính diện tích tam giác ABC
b) Gọi N là trung điểm của AC. Tứ giác ANHB là hình gì?
2) Cho tam giác ABC cân tại A
a) Biết AB=10cm, BC=5cm. Đường trung tuyến AH. Tính diện tích tam giác ABC
b) Gọi M, N lần lượt là trung điểm của AB,AC. Tứ giác BMNC là hình gì?
Mn giúp mik vs bài này mik cần gấp!
Bài 2:
a: H là trung điểm của BC
nên HB=HC=2,5(cm)
\(\Leftrightarrow AH=\dfrac{5\sqrt{15}}{2}\left(cm\right)\)
\(S=\dfrac{\dfrac{5\sqrt{15}}{2}\cdot5}{2}=\dfrac{25\sqrt{15}}{4}\left(cm^2\right)\)
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
Tam giác cân ABC cân tại A có AB=AC=5cm,BC=6cm,phân giác của góc B cắt AC tại M,tia phân giác của góc C cắt AB tại N.
Tính AM,CM,MN
Tính tỉ số diện tích của tam giác AMN và ABC
cho tam giác abc cân tại a có tia phân giác bd,ce cắt nhau tại i tính bd biết ab =30cm ,bc=5cm
\(cosABC=\dfrac{BA^2+BC^2-AC^2}{2\cdot BA\cdot BC}=\dfrac{1}{12}\)
=>góc ABC=85 độ
=>góc ABD=42,5 độ
Xet ΔBAC có BD làphân giác
=>DA/AB=DC/BC
=>DA/6=DC/1=30/7
=>DA=180/7cm
\(cosABD=\dfrac{BA^2+BD^2-AD^2}{2\cdot BA\cdot BD}\)
=>\(\dfrac{30^2+BD^2-\left(\dfrac{180}{7}\right)^2}{2\cdot30\cdot BD}=cos42.5\simeq0,74\)
=>BD^2-11700/49-44.4BD=0
=>\(BD\simeq49,25\left(cm\right)\)
Cho tam giác abc cân tại a có AB=AC=5cm, BC=6cm?( AB=AC=5cm)
a cmr HC=HB
b tính AH?CMR góc HAB=HAC
c kẻ HM vuông góc AB, HN vuông góc AC, CMR HMN cân
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là phân giác của góc BAC
=>HB=HC
b: HB=HC=3cm
=>AH=4cm
AH là phân giác của góc BAC
=>góc BAH=góc CAH
c: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
góc MAH=góc NAH
=>ΔAMH=ΔANH
=>HM=HN
=>ΔHMN cân tại H
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H. Cho AH=4cm,AB=5cm
Chu vi tam giác ABC
A. 18 (cm)
B. 15 (cm)
C. 16 (cm)
D. 20 (cm)
cho tam giác ABC cân tại A có AB=AC=5cm,Bc=6cm.tia phân giác góc B cắt AC tại M,phân giác góc C cắt AB tại N
a)tính AM,MN,CN
b)tính tỉ số diện tích tam giác AMN và tam giác ABC
Cho tam giác ABC cân tại A, cạnh AB = 8cm. Đường tròn tâm O ngoại tiếp tam giác ABC có bán kính bằng 5cm. Tính độ dài cạnh BC.
Kẽ OA cắt đường tròn tại D cắt BC tại K
Ta có OA = OB = OD = R
\(\Rightarrow\)\(\Delta ABD\) vuông tại D
\(\Rightarrow BD=\sqrt{OD^2-AB^2}=\sqrt{10^2-8^2}=6\)
Ta có OK là đường trung trực của BC nên \(\hept{\begin{cases}OK⊥BC\\BK=CK\end{cases}}\)
Ta lại có: \(S_{\Delta ABD}=\frac{1}{2}AB.BD=\frac{1}{2}AD.BK\)
\(\Rightarrow BK=\frac{AB.BD}{AD}=\frac{8.6}{10}=4,8\)
\(\Rightarrow BC=2BK=4,8.2=9,6\)
Viết nhầm tùm lum hết. Do không thấy cái hình. Mà thôi nhìn hình sửa hộ luôn nhé
cho tam giác abc cân tại a có ab = ac =5cm bc=8cm kẻ ah vuông góc với bc (H thuộc B) b) Kẻ HD vuông góc với AB (D thuộc AB) ;HE vuông góc với AC (E thuộc AC) . CMR Tam giác HDE là tam giác cân
b) Xét ΔBAH vuông tại H và ΔCAH vuông tại H có
BA=CA(ΔBAC cân tại A)
AH chung
Do đó: ΔBAH=ΔCAH(cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(hai cạnh tương ứng)
Xét ΔDHB vuông tại D và ΔEHC vuông tại E có
HB=HC(cmt)
\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
Do đó: ΔDHB=ΔEHC(Cạnh huyền-góc nhọn)
Suy ra: HD=HE(Hai cạnh tương ứng)
Xét ΔHDE có HD=HE(cmt)
nên ΔHDE cân tại H(Định nghĩa tam giác cân)