Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dinhvanhungg
Xem chi tiết
Trần Thị Hà Giang
13 tháng 4 2019 lúc 15:39

a) \(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2ab+2bc+2ca\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow a=b=c\)

Mà a + b + c = 3  \(\Rightarrow a=b=c=1\)

\(\Rightarrow M=1+2015+2020\)\(=4036\)

Trần Thanh Phương
13 tháng 4 2019 lúc 18:32

b) \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)

\(\Rightarrow\left(x-y\right)\left(x^2+y^2\right)< \left(x+y\right)\left(x^2-y^2\right)\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2\right)-\left(x+y\right)\left(x-y\right)\left(x+y\right)< 0\)

\(\Leftrightarrow\left(x-y\right)\left[x^2+y^2-\left(x+y\right)\left(x+y\right)\right]< 0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2-x^2-2xy-y^2\right)< 0\)

\(\Leftrightarrow-2xy\left(x-y\right)< 0\)

Có \(x>y\Rightarrow x-y>0\)

\(\Rightarrow-2xy< 0\)

\(\Leftrightarrow xy>0\)

TH1: \(\orbr{\begin{cases}x>0\\y>0\end{cases}}\)( thỏa mãn )

TH2:\(\orbr{\begin{cases}x< 0\\y< 0\end{cases}}\)( loại )

Vậy bđt được chứng minh

dinhvanhungg
14 tháng 4 2019 lúc 16:21

Thanh diu ve di mắt 

Ánh Dương
Xem chi tiết
Akai Haruma
31 tháng 3 2019 lúc 21:41

Bài 1:

Ta có:

\(a^2+b^2+c^2=ab+bc+ac\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\)

\(\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0\)

\((a-b)^2, (b-c)^2, (c-a)^2\geq 0, \forall a,b,c\in\mathbb{R}\). Do đó để tổng của chúng bằng $0$ thì \((a-b)^2=(b-c)^2=(c-a)^2=0\Rightarrow a=b=c\).

Kết hợp với $a+b+c=3$ suy ra $a=b=c=1$

Do đó:

\(M=a^{2016}+2015b^{2015}+2020c=1+2015+2020=4036\)

Akai Haruma
31 tháng 3 2019 lúc 21:44

Bài 2:

Xét hiệu:

\(\frac{x-y}{x+y}-\frac{x^2-y^2}{x^2+y^2}=(x-y)\left(\frac{1}{x+y}-\frac{x+y}{x^2+y^2}\right)\)

\(=(x-y).\frac{x^2+y^2-(x+y)^2}{(x+y)(x^2+y^2)}=\frac{(x-y)(x^2+y^2-x^2-2xy-y^2)}{(x^2+y^2)(x+y)}\)

\(=\frac{-2xy(x-y)}{(x^2+y^2)(x+y)}\)

\(x>y>0\Rightarrow -2xy(x-y)< 0; (x^2+y^2)(x+y)>0\)

\(\Rightarrow \frac{x-y}{x+y}-\frac{x^2-y^2}{x^2+y^2}=\frac{-2xy(x-y)}{(x^2+y^2)(x+y)}< 0\)

\(\Rightarrow \frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)

Ta có đpcm.

Anh Lê Đức
Xem chi tiết
thần giao cách cảm
19 tháng 9 2016 lúc 23:23

thtfgfgfghggggggggggggggggggggg

Đặng Anh Tuấn
Xem chi tiết
Lag
Xem chi tiết
Dam Duyen Le
Xem chi tiết
senorita
Xem chi tiết
Nguyễn Linh Chi
27 tháng 3 2019 lúc 8:58

Ta có: \(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c.1+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\frac{ab}{c\left(b+c\right)+a\left(b+c\right)}}=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\)

\(=\sqrt{\frac{a}{a+c}.\frac{b}{b+c}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)( bđt Cosi)

Tương tự như trên: \(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right);\sqrt{\frac{ac}{b+ac}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{c}{b+c}\right)\)

=> \(P\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}+\frac{a}{a+b}+\frac{c}{b+c}+\frac{b}{a+b}+\frac{c}{a+c}\right)=\frac{3}{2}\)

"=" Xảy ra khi và chỉ khi:

\(\frac{a}{a+c}=\frac{b}{b+c}\Leftrightarrow a\left(b+c\right)=b\left(a+c\right)\Leftrightarrow a=b\)

\(\frac{a}{a+b}=\frac{c}{b+c}\Leftrightarrow a=c\)

\(\frac{c}{a+c}=\frac{b}{a+b}\Leftrightarrow b=c\)

\(a+b+c=1\)

Từ các điều trên ta có đc: \(a=b=c=\frac{1}{3}\)

Vậy GTLN của P=3/2 khi và chỉ khi a=b=c=1/3

Nhicute
Xem chi tiết
Akai Haruma
22 tháng 9 2021 lúc 6:57

Lời giải:
Đặt $\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=t$

$\Rightarrow a=xt; b=yt; c=zt$. Ta có:

$a+b+c=xt+yt+zt=t(x+y+z)=t$

$a^2+b^2+c^2=t^2(x^2+y^2+z^2)=t^2$

$ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{t^2-t^2}{2}=0$

Ta có đpcm.

•๖ۣۜUηĭɗεηтĭƒĭεɗ
Xem chi tiết
The Neil
15 tháng 8 2019 lúc 19:14

a) x^3+y^3>0=>x-y>0

x-y=x^3+y^3>x^3-y^3=(x-y)(x^2+xy+y^2)

=>x-y>(x-y)(x^2+xy+y^2) Do x-y>0 => 1>x^2+xy+y^2 =>1>x^2+y^2 b) a^2+b^2+ab+bc+ca<0 =>2a^2+2b^2+2ab+2bc+2ca<0 =>a^2+b^2-c^2+(a+b+c)^2<0 Mà (a+b+c)^2>=0 =>a^2+b^2-c^2<0 <=>a^2+b^2<c^2