Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Thị Hải Yến

1. Cho các số tự nhiên a,b,c thỏa mãn a^2+b^2+c^2=ab+bc+ca và a+b+c=3. Tính M=a^2016+2015b^2015+2020c

2.Cho x>y>0. Chứng minh x-y/x+y<x^2-y^2/x^2+y^2

l҉o҉n҉g҉ d҉z҉
10 tháng 4 2021 lúc 20:04

1. Cho các số tự nhiên a,b,c thỏa mãn a2+b2+c2=ab+bc+ca và a+b+c=3. Tính M=a2016+2015b2015+2020c

a2+b2+c2=ab+bc+ca

<=> 2( a2+b2+c2 ) =2( ab+bc+ca )

<=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca

<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0

<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ca + a2 ) = 0

<=> ( a - b )2 + ( b - c )2 + ( c - a )2 = 0

Dễ chứng minh VT ≥ 0 ∀ a,b,c. Dấu "=" xảy ra <=> a=b=c

Lại có a+b+c=3 => a=b=c=1

từ đây bạn thế vào tính M nhé :))

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
10 tháng 4 2021 lúc 20:07

2.Cho x>y>0. Chứng minh \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)

Ta có : \(\frac{x^2-y^2}{x^2+y^2}>\frac{x-y}{x+y}\)

<=> \(\frac{x^2-y^2}{x^2+y^2}-\frac{x-y}{x+y}>0\)

<=> \(\frac{\left(x^2-y^2\right)\left(x+y\right)}{\left(x^2+y^2\right)\left(x+y\right)}-\frac{\left(x^2+y^2\right)\left(x-y\right)}{\left(x^2+y^2\right)\left(x+y\right)}>0\)

<=> \(\frac{x^3+x^2y-xy^2-y^3}{\left(x^2+y^2\right)\left(x+y\right)}-\frac{x^3-x^2y+xy^2-y^3}{\left(x^2+y^2\right)\left(x+y\right)}>0\)

<=> \(\frac{x^3+x^2y-xy^2-y^3-x^3+x^2y-xy^2+y^3}{\left(x^2+y^2\right)\left(x+y\right)}>0\)

<=> \(\frac{2x^2y-2xy^2}{\left(x^2+y^2\right)\left(x+y\right)}>0\)

<=> \(\frac{2xy\left(x-y\right)}{\left(x^2+y^2\right)\left(x+y\right)}>0\)( đúng vì x > y > 0 )

=> đpcm 

Khách vãng lai đã xóa

Các câu hỏi tương tự
dinhvanhungg
Xem chi tiết
Đặng Anh Tuấn
Xem chi tiết
Anh Lê Đức
Xem chi tiết
Nguyễn Thị Thanh Huyền
Xem chi tiết
Dam Duyen Le
Xem chi tiết
Hà Nguyễn
Xem chi tiết
Hoàng nhật Giang
Xem chi tiết
WTF
Xem chi tiết
Cô gái thất thường (Ánh...
Xem chi tiết