Bài 1:
Ta có:
\(a^2+b^2+c^2=ab+bc+ac\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\)
\(\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0\)
Vì \((a-b)^2, (b-c)^2, (c-a)^2\geq 0, \forall a,b,c\in\mathbb{R}\). Do đó để tổng của chúng bằng $0$ thì \((a-b)^2=(b-c)^2=(c-a)^2=0\Rightarrow a=b=c\).
Kết hợp với $a+b+c=3$ suy ra $a=b=c=1$
Do đó:
\(M=a^{2016}+2015b^{2015}+2020c=1+2015+2020=4036\)
Bài 2:
Xét hiệu:
\(\frac{x-y}{x+y}-\frac{x^2-y^2}{x^2+y^2}=(x-y)\left(\frac{1}{x+y}-\frac{x+y}{x^2+y^2}\right)\)
\(=(x-y).\frac{x^2+y^2-(x+y)^2}{(x+y)(x^2+y^2)}=\frac{(x-y)(x^2+y^2-x^2-2xy-y^2)}{(x^2+y^2)(x+y)}\)
\(=\frac{-2xy(x-y)}{(x^2+y^2)(x+y)}\)
Vì \(x>y>0\Rightarrow -2xy(x-y)< 0; (x^2+y^2)(x+y)>0\)
\(\Rightarrow \frac{x-y}{x+y}-\frac{x^2-y^2}{x^2+y^2}=\frac{-2xy(x-y)}{(x^2+y^2)(x+y)}< 0\)
\(\Rightarrow \frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
Ta có đpcm.