Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Từ Quỳnh Hương
Xem chi tiết
mặt trăng
Xem chi tiết
Ice Wings
11 tháng 5 2016 lúc 14:38

\(\Rightarrow A<1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.......+\frac{1}{49.50}\)

\(\Rightarrow A<1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{49}-\frac{1}{50}\right)\)

\(\Rightarrow A<1+\left(1-\frac{1}{50}\right)\)

\(\Rightarrow A<1+\frac{49}{50}\)

\(\Rightarrow A<\frac{99}{50}\)

Vì \(\frac{99}{50}<2=\frac{100}{50}\Rightarrow A<2\)  ĐPCM

Hoàng Phúc
11 tháng 5 2016 lúc 14:32

Ta có:

\(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};......;\frac{1}{50^2}<\frac{1}{49.50}\)

Do đó \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{50^2}<1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)

\(\Rightarrow A<1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}=2-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=2-\frac{1}{50}<2\)

=>A<2(đpcm)

Nguyễn Thu Liên
Xem chi tiết
Nguyễn Đức Trường
Xem chi tiết
Nguyễn Thị Giang
Xem chi tiết
son hong
Xem chi tiết
Đỗ Văn Hoài Tuân
26 tháng 7 2015 lúc 20:53

Ta có: A = 1/1 + 1/2 + ... + 1/50

2A = 2 + 1 + ... +1/25

2A - A = (2 + 1 + ... +1/25) - (1 + 1/2 + ... + 1/50)

A = 2 - 1/50

Vì 1/50 > 0 nên 2 - 1/50 < 2

Vậy A < 2 (đpcm)

Kỳ Tỉ
Xem chi tiết
Nguyễn Tuấn Minh
6 tháng 4 2016 lúc 19:58

\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

\(A=1+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)=1+B\)( Gọi biểu thức trong ngoặc là B)

Ta xét B

B=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

B<\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

B<\(1-\frac{1}{2}+\frac{1}{2}-\frac{2}{3}+...+\frac{1}{49}-\frac{1}{50}\)

B<\(1-\frac{1}{50}<1\)

Vậy B<1

=>A=1+B < 1+1=2

Vậy A<2

Ngô Minh Đức
Xem chi tiết
hoacomay
Xem chi tiết
Thắng Nguyễn
6 tháng 5 2016 lúc 20:11

đặt B=1/1.2+1/2.3+...+1/49.50

ta có:

A=1/1^2+1/2^2+1/3^2+1/4^2+....+1/50^2<B=1/1.2+1/2.3+...+1/49.50 (1)

B=1/1.2+1/2.3+...+1/49.50

=1-1/2+1/2-1/3+...+1/49-1/50

=1-1/50<1 (2)

từ (1) va (2)=>A<B<2

=>A<2