Cho \(A=1+\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{n^2}\) với n là số tự nhiên. Chứng minh rằng \(A< \dfrac{7}{4}\).
Cho A =\(\dfrac{1}{2^2}\)+\(\dfrac{1}{2^4}\)+\(\dfrac{1}{2^6}\)+....+\(\dfrac{1}{2^{100}}\).C/minh A <\(\dfrac{1}{3}\)
Tính A= \(\dfrac{1}{2}+\dfrac{1}{2}.\left(1+2\right)+\dfrac{1}{3}.\left(1+2+3\right)+...+\dfrac{1}{100}.\left(1+2+3+...+100\right)\)
Chứng minh : \(\dfrac{1}{2}< \dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+......................+\dfrac{1}{198}+\dfrac{1}{199}+\dfrac{1}{200}< \dfrac{100}{101}\)
Cho A= \(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+.......+\dfrac{1}{3^{2018}}+\dfrac{1}{3^{2019}}\) . Chứng minh rằng: A<\(\dfrac{1}{2}\)
AI LÀM ĐƯỢC MÌNH SẼ TICK!!!
a,Tìm x,y,z biết: \(\dfrac{y+z+1}{x}\)=\(\dfrac{x+z+2}{y}\)=\(\dfrac{x+y-3}{z}\)=\(\dfrac{1}{x+y+z}\)
b,Cho \(\dfrac{a}{b}\)=\(\dfrac{b}{c}\)=\(\dfrac{c}{d}\). Chứng minh rằng: (\(\dfrac{a+b+c}{b+c+d}\))3=\(\dfrac{a}{d}\)
c,Cho \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\). Chứng minh rằng: \(\dfrac{5a+3b}{5c+3d}\)=\(\dfrac{5a-3b}{5c-3d}\)
d,Cho \(\dfrac{3x-2y}{4}\)=\(\dfrac{2z-4x}{3}\)=\(\dfrac{4y-3z}{2}\).Chứng minh rằng: \(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{4}\)
Cho \(A=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{98}+\left(\dfrac{1}{2}\right)^{99}\)
Chứng minh : A<1
Cho \(A=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{98}+\left(\dfrac{1}{2}\right)^{99}\)
Chứng minh : \(A< 1\)
Bài 1: Cho P= 7+72+73+74+.........+72016. Chứng minh P chia hết cho 400.
Bài 2: Tìm giá trị lớn nhất
a) A= | x - 1004 | - | x+1003 |
b) B = | x - 2018 | - | x - 2017 |
Bài 3 : Cho \(\dfrac{2x-4y}{3}=\dfrac{4z-3y}{2}=\dfrac{3y-2z}{4}\) . Tìm x,y,z biết 2x-y+z = 27
Bài 4: Tìm các số thực x,y,z biết \(\dfrac{x+y-3}{z}=\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{1}{x+y+z}\)
Bài 5 : a) Tính : \(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+.....+\dfrac{1}{19.21}\)
b) Chứng minh : \(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n-1\right)}\) < \(\dfrac{1}{2}\)