Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huyền Trân
Xem chi tiết
Kudo Shinichi
18 tháng 9 2019 lúc 20:47

\(A=-x^2+2x+9=-\left(x^2-2x+1\right)+10=-\left(x+1\right)2+10\)

Ta có : \(-\left(x+1\right)^2\le0\forall x\)

\(-\left(x+1\right)^2+10\le10\)

Dấu " = " xảy ra khi \(\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Vậy \(GTLN\) của A là 10 đạt được khi \(x=-1\)

sơn bá
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 12 2021 lúc 8:24

a: \(M=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)

nguyễn quỳnh chi
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
23 tháng 10 2020 lúc 19:07

A = x2 - 2x + 9 = ( x2 - 2x + 1 ) + 8 = ( x - 1 )2 + 8 ≥ 8 ∀ x

Dấu "=" xảy ra khi x = 1

=> MinA = 8 <=> x = 1

B = x2 + 6x - 3 = ( x2 + 6x + 9 ) - 12 = ( x + 3 )2 - 12 ≥ -12 ∀ x

Dấu "=" xảy ra khi x = -3

=> MinB = -12 <=> x = -3

C = ( x - 1 )( x - 3 ) + 9 = x2 - 4x + 3 + 9 = ( x2 - 4x + 4 ) + 8 = ( x - 2 )2 + 8 ≥ 8 ∀ x

Dấu "=" xảy ra khi x = 2

=> MinC = 8 <=> x = 2

D = -x2 - 4x + 7 = -( x2 + 4x + 4 ) + 11 = -( x + 2 )2 + 11 ≤ 11 ∀ x

Dấu "=" xảy ra khi x = -2

=> MaxD = 11 <=> x = -2

Khách vãng lai đã xóa
Sultanate of Mawadi
27 tháng 10 2020 lúc 8:38

hello, cần lm j z?

Khách vãng lai đã xóa
Phan Tiến Thành
12 tháng 1 2022 lúc 19:39

klkkkkkkkkkujoiyuj

Khách vãng lai đã xóa
༺ミ𝒮σɱєσиє...彡༻
Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 11 2021 lúc 15:23

\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)

ILoveMath
13 tháng 11 2021 lúc 15:24

a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)

Dấu "=" \(\Leftrightarrow x=-1\)

b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)

c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)

Dấu "=" \(\Leftrightarrow x=2\)

NGUYÊN ĐZ
6 tháng 1 lúc 13:45

um


DuyAnh Phan
Xem chi tiết
Yến Trần
Xem chi tiết
Xyz OLM
2 tháng 5 2021 lúc 22:22

Ta có A = -x2 + 2x + 9 = -x2 + 2x - 1 + 10 = -(x2 - 2x + 1) + 10 = -(x - 1)2 + 10 \(\le\)10

Dấu "=" xảy ra <=> x - 1 = 0 

=> x = 1

Vậy Max A = 10 <=> x = 1

Khách vãng lai đã xóa
Nguyễn Minh Đăng
2 tháng 5 2021 lúc 22:24

Ta có: \(A=-x^2+2x+9\)

\(A=\left(-x^2+2x-1\right)+10\)

\(A=-\left(x^2-2x+1\right)+10\)

\(A=-\left(x-1\right)^2+10\le10\left(\forall x\right)\)

Dấu "=" xảy ra khi: x = 1

Khách vãng lai đã xóa
Yến Trần
2 tháng 5 2021 lúc 22:25

cảm ơn ạ 

Khách vãng lai đã xóa
My Love
Xem chi tiết
Thanh Tùng DZ
5 tháng 6 2019 lúc 16:04

A = -x2 + 2x + 9

A = -x2 + 2x -1 + 10

A = -(x-1)2 + 10 \(\le\)10

Vậy max A = 10 \(\Leftrightarrow x=1\)

A = -x2 + 2x + 9 = -(x2 – 2x + 1) + 10 = - (x + 1)2 + 10

Ta có: - (x + 1)2 ≤ 0 ∀x

- (x + 1)2 + 10 ≤ 10

Dấu bằng xảy ra khi (x + 1)2 = 0 ⇔ x = -1

Vậy GTLN của A là 10, đạt được khi x = -1

T.Ps
5 tháng 6 2019 lúc 16:09

#)Giải :

\(A=-x^2+2x+9\)

\(\Rightarrow A=-\left(x^2-2x-9\right)\)

\(\Rightarrow A=-\left(x^2-2x+1-10\right)\)

\(\Rightarrow A=-\left(x-1\right)^2+10\)

Vì \(-\left(x-1\right)^2\le0\)

\(\Rightarrow-\left(x-1\right)^2+10\le10\)hay \(A\le10\)

\(\Rightarrow\)GTLN của A = 10 khi x - 1 = 0 

Xuyen Phan
Xem chi tiết
Nguyễn Huy Tú
20 tháng 7 2021 lúc 18:36

a, \(A=-x^2-2x+3=-\left(x^2+2x-3\right)=-\left(x^2+2x+1-4\right)\)

\(=-\left(x+1\right)^2+4\le4\)

Dấu ''='' xảy ra khi x = -1 

Vậy GTLN là 4 khi x = -1 

b, \(B=-4x^2+4x-3=-\left(4x^2-4x+3\right)=-\left(4x^2-4x+1+2\right)\)

\(=-\left(2x-1\right)^2-2\le-2\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy GTLN B là -2 khi x = 1/2 

c, \(C=-x^2+6x-15=-\left(x^2-2x+15\right)=-\left(x^2-2x+1+14\right)\)

\(=-\left(x-1\right)^2-14\le-14\)

Vâỵ GTLN C là -14 khi x = 1

Bài 8 : 

b, \(B=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x = 3

Vậy GTNN B là 2 khi x = 3 

c, \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy ...

c, \(x^2-12x+2=x^2-12x+36-34=\left(x-6\right)^2-34\ge-34\)

Dấu ''='' xảy ra khi x = 6

Vậy ...

Kudora Sera
Xem chi tiết
trần đức mạnh
5 tháng 2 2021 lúc 14:23

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

Khách vãng lai đã xóa
trần đức mạnh
5 tháng 2 2021 lúc 14:25

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

Khách vãng lai đã xóa
Unirverse Sky
16 tháng 11 2021 lúc 7:53

1 . 

3−x2+2x3−x2+2x

=−(x2−2x−3)=−(x2−2x−3)

=−(x2−2.x.1+1−4)=−(x2−2.x.1+1−4)

=−((x−1)2−4)=−((x−1)2−4)

=4−(x−1)2≤4=4−(x−1)2≤4

Vậy MAXB=4⇔x−1=0⇒x=1

2 . 

A=2x2−5x+2=2(x2−52x+2516)−98A=2x2−5x+2=2(x2−52x+2516)−98

=2(x−54)2−98=2(x−54)2−98

Ta có : 2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x

Vậy GTNN A = -9/8 <=> x = 5/4 

3 . 

Khách vãng lai đã xóa