Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
addfx
Xem chi tiết
Kiều Vũ Linh
2 tháng 10 2023 lúc 16:23

a) Sửa đề: Tìm GTNN

A = |2x - 1| - 4

Ta có:

|2x - 1| ≥ 0 với mọi x ∈ R

⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R

Vậy GTNN của A là -4 khi x = 1/2

b) B = 1,5 - |2 - x|

Ta có:

|2 - x| ≥ 0 với mọi x ∈ R

⇒ -|2 - x| ≤ 0 với mọi x ∈ R

⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R

Vậy GTLN của B là 1,5 khi x = 2

c) C = |x - 3| ≥ 0 với mọi x ∈ R

Vậy GTNM của C là 0 khi x = 3

d) D = 10 - 4|x - 2|

Ta có:

|x - 2| ≥ 0 với mọi x ∈ R

⇒ 4|x - 2| ≥ 0 với mọi x ∈ R

⇒ -4|x - 2| ≤ 0 với mọi x ∈ R

⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R

Vậy GTLN của D là 10 khi x = 2

Đàm Tùng Vận
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 10:46

\(A=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ A_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)

Xem chi tiết
Nguyễn Đức Trí
18 tháng 9 2023 lúc 14:57

a) \(A=\sqrt[]{x^2-2x+5}\)

\(\Leftrightarrow A=\sqrt[]{x^2-2x+1+4}\)

\(\Leftrightarrow A=\sqrt[]{\left(x+1\right)^2+4}\)

mà \(\left(x+1\right)^2\ge0,\forall x\in R\)

\(A=\sqrt[]{\left(x+1\right)^2+4}\ge\sqrt[]{4}=2\)

Dấu "=" xảy ra khi và chỉ khi \(x+1=0\Leftrightarrow x=-1\)

Vậy \(GTNN\left(A\right)=2\left(khi.x=-1\right)\)

b) \(B=5-\sqrt[]{x^2-6x+14}\)

\(\Leftrightarrow B=5-\sqrt[]{x^2-6x+9+5}\)

\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\left(1\right)\)

Ta có : \(\left(x-3\right)^2\ge0,\forall x\in R\)

\(\Leftrightarrow\left(x-3\right)^2+5\ge5,\forall x\in R\)

\(\Leftrightarrow\sqrt[]{\left(x-3\right)^2+5}\ge\sqrt[]{5},\forall x\in R\)

\(\Leftrightarrow-\sqrt[]{\left(x-3\right)^2+5}\le-\sqrt[]{5},\forall x\in R\)

\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\le5-\sqrt[]{5},\forall x\in R\)

Dấu "=" xả ra khi và chỉ khi \(x-3=0\Leftrightarrow x=3\)

Vậy \(GTLN\left(B\right)=5-\sqrt[]{5}\left(khi.x=3\right)\)

Lê Phan Thảo Đan
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 10:14

\(A=\left(2x-1\right)^2+9\ge9\\ A_{min}=9\Leftrightarrow x=\dfrac{1}{2}\\ B=2\left(x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{1}{8}\ge\dfrac{1}{8}\\ B_{min}=\dfrac{1}{8}\Leftrightarrow x=\dfrac{3}{4}\\ C=\left(4x^2+4xy+y^2\right)+2\left(2x+y\right)+1+\left(y^2+4y+4\right)-4\\ C=\left[\left(2x+y\right)^2+2\left(2x+y\right)+1\right]+\left(y+2\right)^2-4\\ C=\left(2x+y+1\right)^2+\left(y+2\right)^2-4\ge-4\\ C_{min}=-4\Leftrightarrow\left\{{}\begin{matrix}2x=-1-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-2\end{matrix}\right.\)

\(D=\left(3x-1-2x\right)^2=\left(x-1\right)^2\ge0\\ D_{min}=0\Leftrightarrow x=1\\ G=\left(9x^2+6xy+y^2\right)+\left(y^2+4y+4\right)+1\\ G=\left(3x+y\right)^2+\left(y+2\right)^2+1\ge1\\ G_{min}=1\Leftrightarrow\left\{{}\begin{matrix}3x=-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-2\end{matrix}\right.\)

Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 10:20

\(H=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(2y^2+4y+2\right)+2\\ H=\left(x-y\right)^2+\left(x+1\right)^2+2\left(y+1\right)^2+2\ge2\\ H_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-1\\y=-1\end{matrix}\right.\Leftrightarrow x=y=-1\)

Ta luôn có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\\ \Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3xz\\ \Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\\ \Leftrightarrow\dfrac{3^2}{3}\ge xy+yz+xz\\ \Leftrightarrow K\le3\\ K_{max}=3\Leftrightarrow x=y=z=1\)

 

Nguyễn Minh Trang
Xem chi tiết

GTNN của A là  2018

Trần Thanh Phương
27 tháng 12 2018 lúc 19:50

Vì \(\left(x-17\right)^4\ge0\forall x;\left|y+42\right|\ge0\forall y\)

\(\Rightarrow A\ge2018\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-17=0\\y+42=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=17\\y=-42\end{cases}}}\)

Vậy..........

Huyền Nhi
27 tháng 12 2018 lúc 19:55

\(A=\left(x-17\right)^4+\left|y+42\right|+2018\)

Vì \(\left(x-17\right)^4\ge0vs\forall x;\left|y+42\right|\ge0vs\forall y\)

\(\Rightarrow A\ge2018vs\forall x;y\)

Dấu \(''=''\) xảy ra khi : \(\left(x-17\right)^4+\left|y+42\right|=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-17\right)^4=0\\\left|y+42\right|=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x-17=0\\y+42=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=17\\y=-42\end{cases}}\)

Vậy \(A_{min}=2018\Leftrightarrow x=17;y=-42\)

Hồ Hữu Duyy
Xem chi tiết
Tiến Hoàng Minh
4 tháng 1 2022 lúc 15:44

A=(x+2)^2+5

(x+2)^2≥0

Dấu = xay ra ⇔x=-2

Vậy GTNN của A=5<=>x=-2

Tiến Hoàng Minh
4 tháng 1 2022 lúc 15:46

B=(x-2)^2+9

(x-2)^2≥0

Dấu = xay ra ⇔x=2

Vậy GTNN của B=9<=>x=2

Nguyễn Mai Anhh
Xem chi tiết
Huỳnh Quang Sang
6 tháng 8 2019 lúc 21:38

Ta đã biết với mọi x,y thuộc Q thì \(\left|x+y\right|\le\left|x\right|+\left|y\right|\).

Đẳng thức xảy ra khi \(xy\ge0\)

Ta có : \(A=\left|x-3\right|+\left|x-2\right|=\left|x-3\right|+\left|2-x\right|\ge\left|x-3+2-x\right|=\left|-1\right|=1\)

Vậy \(A\ge1\), A đạt giá trị nhỏ nhất là 1 khi \(2\le x\le3\)

Phải không ta???

Nguyễn Tiến Đạt
6 tháng 8 2019 lúc 21:40

Ta có A=|x-3|+|x-2|

            = |3-x|+|x-2|

         \(\ge\)\(\left|3-x+x-2\right|\)=|1|=1

=> GTNN của A=1 \(\Leftrightarrow\left(3-x\right)\left(x-2\right)\ge0\)

                              \(\Leftrightarrow2\le x\le3\)

 Vậy Min A=1 khi \(2\le x\le3\)

tk mk nha*****CHÚC BẠN HỌC GIỎI*****
Mặt Trời Mùa Đông
Xem chi tiết
Lê Tuấn Nghĩa
6 tháng 8 2019 lúc 21:52

A=\(\left|x-3\right|+\left|x-2\right|\)

A= \(\left|3-x\right|+\left|x-2\right|\ge\left|3-x+x-2\right|\)

\(\ge\left|1\right|\)=1

vậy Amin=1 khi x=3 hoặc x=2

Mặt Trời Mùa Đông
Xem chi tiết

ta có Ix- 3I >= 0

Ix-5I >= 0

=> A >= 0

Đấu "=" đúng ở dạng ta có 2 th

TH1 x-3 = 0 => x = 3 

=>Ix-5I = I3-5I = I-2I = 2

=> A = 0 + 2 =2

th2 x-5 = 0 => x = 5

=>Ix-3I = I5-3I = 2

=> A = 0+2 = 2

VẬY giá tri nhỏ nhất của A = 2

I am➻Minh
6 tháng 8 2019 lúc 21:17

\(\left|x-3\right|+\left|x+5\right|\)

\(=\left|3-x\right|+\left|x+5\right|\ge\left|3-x+x+5\right|=8\)

\(\text{Dấu = xảy ra}\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)

\(-5\le x\le3\)

\(\text{Vậy A đạt GTNN là 8 khi }-5\le x\le3\)

Lê Tài Bảo Châu
6 tháng 8 2019 lúc 21:18

\(A=|x-3|+|x+5|\)

\(=|3-x|+|x+5|\ge|3-x+x+5|\)

                             Hay \(A\ge8\)

Dấu "=" xảy ra \(\Leftrightarrow\left(3-x\right)\left(x+5\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}3-x\ge0\\x+5\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}3-x< 0\\x+5< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\le3\\x\ge-5\end{cases}}\)hoặc \(\hept{\begin{cases}x>3\\x< -5\end{cases}\left(loai\right)}\)

\(\Rightarrow-5\le x\le3\)

Vậy Min A=8 \(\Rightarrow-5\le x\le3\)

Hiếu Tạ
Xem chi tiết
Stephen Hawking
17 tháng 11 2018 lúc 16:19

Ta có : \(|x-10|+|x-5|=|x-10|+|5-x|\ge|x-10+5-x|=|-5|=5\)

\(\Rightarrow minA=5\Leftrightarrow\left(x-10\right)\left(5-x\right)\ge0\)

\(TH1:\hept{\begin{cases}x-10\ge0\\5-x\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge10\\5\ge x\end{cases}}\Rightarrow\hept{\begin{cases}x\ge10\\x\le5\end{cases}\Rightarrow}10\le x\le5\)(vô lý)

\(TH2:\hept{\begin{cases}x-10< 0\\5-x< 0\end{cases}\Rightarrow}\hept{\begin{cases}x< 10\\5>x\end{cases}\Rightarrow\hept{\begin{cases}x< 10\\x>5\end{cases}\Rightarrow}5< x< 10}\)(thoả mãn)

Vậy \(minA=5\Leftrightarrow5< x< 10\)

Nguyệt
17 tháng 11 2018 lúc 18:31

\(A=\left|x-10\right|+\left|x-5\right|=\left|x-10\right|+\left|-x+5\right|\ge\left|x-10-x+5\right|=\left|-5\right|=5\)

dấu = xảy ra khi \(\left(x-10\right).\left(-x+5\right)\ge0\)

\(\Rightarrow5\le x\le10\)

Vậy min A=10 khi và chỉ khi \(5\le x\le10\)