giải phương trinh :\(\frac{3}{x^2+5x+4}+\frac{2}{x^2+10x+24}=\frac{4}{3}+\frac{9}{x^2+3x-18}\)
Giải các phương trình sau:
a) \(x^3-2x^2-5x+6=0\)
b) \(\left|5-3x\right|=3x-5\)
c) \(\frac{3}{x^2+5x+4}+\frac{2}{x^2+10x+24}=\frac{4}{3}+\frac{9}{x^2+3x-18}\)
d) \(x^2-y^2+2x-4y-10=0\)với x, y nguyên dương
a) \(x^3-2x^2-5x+6=0\)
\(x^3-x^2-x^2+x-6x+6=0\)
\(x^2\left(x-1\right)-x\left(x-1\right)-6\left(x-1\right)=0\)
\(\left(x-1\right)\left(x^2-x-6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x^2-x-6=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x^2-2x+3x-6=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\\left(x+3\right)\left(x-2\right)=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=\left\{2;-3\right\}\end{cases}}\)
\(a,x^3-2x^2-5x+6=0\)
\(\Leftrightarrow\left(x^3-x^2\right)-\left(x^2-x\right)-\left(6x-6\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)-x\left(x-1\right)-6\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\left(x^2-3x\right)+\left(2x-6\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x-3\right)+2\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow x-1=0\left(h\right)x+2=0\left(h\right)x-3=0\)
\(\Leftrightarrow x=1\left(h\right)x=-2\left(h\right)x=3\)
Vậy \(x\in\left\{-2;1;3\right\}\)
P/S: (h) là hoặc nhé
\(b,\left|5-3x\right|=3x-5\)
*Nếu \(x\ge\frac{5}{3}\)thì
\(3x-5=3x-5\)Luôn đúng \(\forall x\ge\frac{5}{3}\)
*Nếu \(x< \frac{5}{3}\)thì
\(5-3x=3x-5\)
\(\Leftrightarrow6x=10\)
\(\Leftrightarrow x=\frac{5}{3}\)(loại vì ko thỏa mãn khoảng đag xét)
Vậy \(x\ge\frac{5}{3}\)
Cách khác : dùng tính chất của trị tuyệt đối
\(\left|5-3x\right|=3x-5\)
Vì \(VT\ge0\Rightarrow VP\ge0\)
\(\Leftrightarrow3x-5\ge0\)
\(\Leftrightarrow x\ge\frac{5}{3}\)
Vậy ...........
bài 1 giải phương trình
a) (2x+3)\(^2\)-3(x-4)(x+4)=\(\left(x-2\right)^2\)+1
b)(3x-2) (9x\(^2\)+6x+4)-(3x-1) (9x\(^2\)+3x+1)=x-4
c)x (x-1) -(x-3) (x+4)=5x
d) (2x+1)(2x-1)=4x(x-7)-3x
bài 2 giải phương trình
a)\(\frac{x}{10}-\left(\frac{x}{30}+\frac{2x}{45}\right)=\frac{4}{5}\)
b)\(\frac{10x-5}{18}+\frac{x+3}{12}=\frac{7x+3}{6}+\frac{12-x}{9}\)
c)\(\frac{10x+3}{8}=\frac{7-8x}{12}\)
d)\(\frac{x+4}{5}-x-5=\frac{x+3}{3}-\frac{x-2}{2}\)
Giải phương trình:
a)\(\frac{3}{x^2+5x+4}\)+\(\frac{2}{x^2+10x+24}\)=\(\frac{4}{3}\)+\(\frac{9}{x^2+3x-18}\)
b) x2\(-\)y2+x\(-\)4y\(-\)10=0 (x; y \(\in\)N*)
\(\frac{x+\frac{2\left(3-x\right)}{5}}{14}-\frac{5x-4\left(x-1\right)}{24}=\frac{7x+2+\frac{9-3x}{5}}{12}+\frac{2}{3}\)
Giải phương trình.
mấy chế ai biết giải thì giải dùm mik mấy bài nè vs.
Giải phương trình:
1) \(\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}=\frac{1}{6}\)
2) \(\frac{1}{x^2-6x+8}+\frac{1}{x^2-10x+24}+\frac{1}{x^2-14x+48}=\frac{1}{9}\)
3) \(\frac{1}{x^2-3x+3}+\frac{2}{x^2-3x+4}=\frac{6}{x^2-3x+5}\)
4) \(\frac{6}{\left(x+1\right)\left(x+2\right)}+\frac{8}{\left(x-1\right)\left(x+4\right)}=1\)
5) \(4\left(x^3+\frac{1}{x^3}\right)=13\left(x+\frac{1}{x}\right)\)
6) \(\frac{4x}{4x^2-8x+7}+\frac{3x}{4x^2-10x+7}=1\)
7) \(\frac{x^2-3x+5}{x^2-4x+5}-\frac{x^2-5x+5}{x^2-6x+5}=\frac{-1}{4}\)
8) \(x\frac{8-x}{x-1}.\left(x-\frac{8-x}{x-1}\right)=15\)
Giải phương trình
A.\(\frac{3x-2}{6}\)-\(\frac{4-3x}{18}\)=\(\frac{4-x}{9}\)
B. \(\frac{2+3x}{6}\)-x+2=\(\frac{X-7}{9}\)
C.\(\frac{6-x}{x^2-9}\)+\(\frac{2}{x+3}\)=\(\frac{-5}{x-3}\)
D. (5x+2)(x2-7)=0
E. \(\frac{3}{x-4}\)+\(\frac{5x-2}{x^2-16}\)=\(\frac{4}{x+4}\)
a) Ta có: \(\frac{3x-2}{6}-\frac{4-3x}{18}=\frac{4-x}{9}\)
\(\Leftrightarrow\frac{3\left(3x-2\right)}{18}-\frac{4-3x}{18}-\frac{2\left(4-x\right)}{18}=0\)
\(\Leftrightarrow9x-6-4+3x-\left(8-2x\right)=0\)
\(\Leftrightarrow12x-10-8+2x=0\)
\(\Leftrightarrow10x-18=0\)
\(\Leftrightarrow10x=18\)
hay \(x=\frac{9}{5}\)
Vậy: \(x=\frac{9}{5}\)
b) Ta có: \(\frac{2+3x}{6}-x+2=\frac{x-7}{9}\)
\(\Leftrightarrow\frac{3\left(2+3x\right)}{18}-\frac{18x}{18}+\frac{36}{18}-\frac{2\left(x-7\right)}{18}=0\)
\(\Leftrightarrow6+9x-18x+36-\left(2x-14\right)=0\)
\(\Leftrightarrow42-9x-2x+14=0\)
\(\Leftrightarrow56-11x=0\)
\(\Leftrightarrow11x=56\)
hay \(x=\frac{56}{11}\)
Vậy: \(x=\frac{56}{11}\)
c) ĐKXĐ: x∉{3;-3}
Ta có: \(\frac{6-x}{x^2-9}+\frac{2}{x+3}=\frac{-5}{x-3}\)
\(\Leftrightarrow\frac{6-x}{\left(x-3\right)\left(x+3\right)}+\frac{2\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\frac{-5\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow6-x+2x-6=-5x-15\)
\(\Leftrightarrow x+5x+15=0\)
\(\Leftrightarrow6x=-15\)
hay \(x=\frac{-5}{2}\)(tm)
Vậy: \(x=\frac{-5}{2}\)
d) Ta có: \(\left(5x+2\right)\left(x^2-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+2=0\\x^2-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=-2\\x^2=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-2}{5}\\x=\pm\sqrt{7}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{-2}{5};\sqrt{7};-\sqrt{7}\right\}\)
e) ĐKXĐ: x∉{4;-4}
Ta có: \(\frac{3}{x-4}+\frac{5x-2}{x^2-16}=\frac{4}{x+4}\)
\(\Leftrightarrow\frac{3\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}+\frac{5x-2}{\left(x-4\right)\left(x+4\right)}-\frac{4\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}=0\)
\(\Leftrightarrow3x+12+5x-2-\left(4x-16\right)=0\)
\(\Leftrightarrow8x+10-4x+16=0\)
\(\Leftrightarrow4x+26=0\)
\(\Leftrightarrow4x=-26\)
hay \(x=\frac{-13}{2}\)(tm)
Vậy: \(x=\frac{-13}{2}\)
GIẢI CÁC PHƯƠNG TRÌNH
a) \(x-\frac{5x+2}{6}=\frac{7-3x}{4}\)
b) \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)
c) \(\frac{x}{3}-\frac{2x+1}{2}=\frac{x}{6}-x\)
d) \(\frac{2+x}{3}=\frac{1}{2}x=\frac{1-2x}{4}+\frac{1}{4}\)
a, \(x-\frac{5x+2}{6}=\frac{7-3x}{4}\)
\(\frac{12x}{12}-\frac{2\left(5x+2\right)}{12}=\frac{3\left(7-3x\right)}{12}\)
\(12x-10x-4=21-9x\)
\(11x=25\)
\(x=\frac{24}{11}\)
\(b,\frac{10x+3}{12}=1+\frac{6+8x}{9}\)
\(\frac{10x+3}{12}=\frac{15+8x}{9}\)
\(9\left(10x+3\right)=12\left(15+8x\right)\)
\(3\left(10x+3\right)=4\left(8x+15\right)\)
\(30x+9=32x+60\)
\(-2x=51\)
\(x=-\frac{51}{2}\)
\(c,\frac{x}{3}-\frac{2x+1}{2}=\frac{x}{6}-x\)
\(\frac{2x}{6}-\frac{3\left(2x+1\right)}{6}=\frac{x-6x}{6}\)
\(2x-6x-3=x-6x\)
\(x=3\)
P/s: Bn xem lại đề bài phần d nha!
=.= hk tốt!!
Giải phương trình sau:
\(\frac{x+\frac{2\left(3-x\right)}{5}}{14}-\frac{5x-4\left(x-1\right)}{24}=\frac{7x+2+\frac{9-3x}{5}}{12}+\frac{2}{3}\)
(đang cần rất gấp cho kì thi học kì)
\(\frac{x+\frac{2\left(3-x\right)}{5}}{14}-\frac{5x-4\left(x-1\right)}{24}=\frac{7x+2+\frac{9-3x}{5}}{12}+\frac{2}{3}\)
\(\Leftrightarrow\frac{\frac{5x+6-2x}{5}}{14}-\frac{x+4}{24}=\frac{\frac{35x+10+9-3x}{5}}{12}+\frac{2}{3}\)
\(\Leftrightarrow\frac{\frac{3x+6}{5}}{14}-\frac{x+4}{24}=\frac{\frac{32x+19}{5}}{12}+\frac{2}{3}\)
\(\Leftrightarrow\left(\frac{3x+6}{5}\cdot\frac{1}{14}\right)-\frac{x+4}{24}=\left(\frac{32x+19}{5}\cdot\frac{1}{12}\right)+\frac{2}{3}\)(CHIA CHO 14 LÀ NHÂN NGHỊCH ĐẢO VỚI 1/14,) (CHIA CHO 12 LÀ NHÂN NGHỊCH ĐẢO VỚI 1/12)\(\Leftrightarrow\frac{3x+6}{70}-\frac{x+4}{24}-\frac{32x+19}{60}-\frac{2}{3}=0\)\(\Leftrightarrow\frac{12\left(3x+6\right)-35\left(x+4\right)-14\left(32x+19\right)-2\cdot280}{840}=0\)
\(\Leftrightarrow12\left(3x+6\right)-35\left(x+4\right)-14\left(32x+19\right)-560=0\)
\(\Leftrightarrow36x+72-35x-140-448x-266-560=0\)
\(\Leftrightarrow-447x-894=0\Leftrightarrow x=\frac{-894}{447}=-2\)(NHẬN)
Vậy tập nghiệm của phương trình là : S = { -2 }
tk cho mk nka ! ! ! th@nks ! ! !
8. Giải phương trình sau:
b) \(\frac{-x^2+12x+4}{x^2+3x-4}=\frac{12}{x+4}+\frac{12}{3x-3}\)
9. Giải phương trình chứa ẩn ở mẫu sau:
\(\frac{1}{2x^2+5x-7}-\frac{2}{x^2-1}=\frac{3}{2x^2-5x-7}\)
8,
b, (-x2+12x+4)/(x2+3x-4) = 12/(x+4) + 12/(3x-3)
(=) (-x2+12x+4)/(x-1)(x+4) -12(x-1)/(x-1)(x+4) - 4(x+4)/(x-1)(x+4) = 0
(=) -x2 +12x +4 -12x +12 -4x -16 = 0
(=) -x2 -4x = 0
(=) -x(x+4) = 0
(=) -x = 0 hoặc x +4 = 0
(=) x=0 hoặc x=-4
Vậy S={0;4}
Chúc bạn học tốt.