Tìm Max và Min của A=
\(2\cdot x^2+\frac{1}{^{x^2}}+\frac{y^2}{4}=4\)
1. Cho A=\(\frac{3}{2+\sqrt{2x-x^2}+3}\)
a. Tìm x để A có nghĩa
b. Tìm Min(A), Max(A)
2/ Tìm Min, Max của: \(A=\frac{1}{2+\sqrt{x-x^2}}\)
3/ Tìm Min(B) biết: \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
4/ Tìm Min, Max của:\(C=\frac{4x+3}{x^2+1}\)
5/ Tìm Max của: \(A=\sqrt{x-1}+\sqrt{y-2}\)biết \(x+y=4\)
6/ Tìm Max(B) biết: \(B=\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
7/ Tìm Max(C) biết: \(C=x+\sqrt{2-x}\)
tích mình với
ai tích mình
mình tích lại
thanks
1. Cho a, b là các hằng số dương. Tìm min A=x+y biết x>0, y>0; \(\frac{a}{x}+\frac{b}{y}=1\)
2.Tìm \(a\in Z\), a#0 sao cho max và min của \(A=\frac{12x\left(x-a\right)}{x^2+36}\)cũng là số nguyên
3. Cho \(A=\frac{x^2+px+q}{x^2+1}\) . Tìm p, q để max A=9 và min A=-1
4. Tìm min \(P=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\) với x,y,z>0 ; \(x^2+y^2+z^2\le3\)
5. Tìm min \(P=3x+2y+\frac{6}{x}+\frac{8}{y}\) với \(x+y\ge6\)
6. Tìm min, max \(P=x\sqrt{5-x}+\left(3-x\right)\sqrt{2+x}\) với \(0\le x\le3\)
7.Tìm min \(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\) với x>0, y>0; x+y=1
8.Tìm min, max \(P=x\left(x^2+y\right)+y\left(y^2+x\right)\) với x+y=2003
9. Tìm min, max P = x--y+2004 biết \(\frac{x^2}{9}+\frac{y^2}{16}=36\)
10. Tìm mã A=|x-y| biết \(x^2+4y^2=1\)
tìm min,max của M = 2016+ xy biết \(2x^2+\frac{1}{x^2}+\frac{4}{y^2}=4\)
Ý tưởng: Đặt \(xy=\frac{1}{k}\) hay \(y=\frac{1}{kx}\).
Ta có \(2x^2+\frac{1}{x^2}+\frac{4}{y^2}=4\Rightarrow2x^2+\frac{1}{x^2}+4k^2x^2=4\)
Suy ra \(\left(4k^2+2\right)x^4-4x^2+1=0\)
Đặt \(X=x^2\). Giả thiết trở thành \(\left(4k^2+2\right)X^2-4X+1=0\) (1), trong đó \(X\) dương.
Do \(X\) tồn tại (theo đề bài) nên có thể coi (1) là phương trình tham số \(k\), và phải có nghiệm dương.
\(\Delta'=2^2-\left(4k^2+2\right)=2-4k^2\)
Nhận xét: Nếu (1) có 2 nghiệm (tính cả nghiệm kép) thì tổng và tích của chúng đều dương nên 2 nghiệm là dương.
Vậy chỉ cần \(\Delta'\ge0\), tức là \(-\sqrt{2}\le\frac{1}{k}\le\sqrt{2}\)
Vậy min\(M=2016-\sqrt{2}\)(đẳng thức xảy ra tại \(x=-\frac{1}{\sqrt{2}},y=2\),
max\(M=2016+\sqrt{2}\) (đẳng thức xảy ra tại \(x=-\frac{1}{\sqrt{2}},y=-2\)
Tìm min,max của P=xyz biết A= \(\frac{8-x^2}{16+x^4}+\frac{8-y^2}{16+y^4}+\frac{8-z^2}{16+z^4}\ge0.\)
Cho a;b;c >0 thỏa mã \(a+b+c\le3\)Tìm min P \(=\left(3+\frac{1}{a}+\frac{1}{b}\right)\left(3+\frac{1}{b}+\frac{1}{c}\right)\left(3+\frac{1}{c}+\frac{1}{a}\right)\)
Bài 1: Tìm x, biết:
\(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\)
Bài 2: Tìm min, max của các biểu thức sau:
a) \(A=\frac{3}{4}+\left(x-\frac{1}{2}\right)^2\)
b) \(B=\frac{4}{\left|x-\frac{2}{3}\right|+9}\)
Bài 2 :
Ta có : \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\in R\)
\(\Rightarrow A=\frac{3}{4}+\left(x-\frac{1}{2}\right)^2\ge\frac{3}{4}\forall x\in R\)
Vậy Amin = \(\frac{3}{4}\) dấu "=" chỉ sảy ra khi x = \(\frac{1}{2}\)
Cảm ơn bạn nhiều nha
Còn câu b bạn suy nghĩ được chưa
Bài 1: Tìm min và max của \(A=x\left(x^2-6\right)\) biết \(0\le x\le3\)
Baì 2: Tìm max của \(A=\left(3-x\right)\left(4-y\right)\left(2x+3y\right)\) biết \(0\le x\le3\) và \(0\le y\le4\)
Bài 3: Cho a, b, c>0 và a+b+c=1. Tìm min của \(A=\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\)
Bài 4: Cho 0<x<2. Tìm min của \(A=\frac{9x}{2-x}+\frac{2}{x}\)
Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Đặt a+b=x;b+c=y;c+a=z
\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)
Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)
1.tìm max A=(\(\frac{x}{x+2020}\))\(^2\) với x>0
2. tìm min C= \(\frac{\left(4x+1\right)\left(4+x\right)}{x}\) với x dương
3.cho 3a+5b=12. tìmmin B=ab
4.tìm min \(x^2-x+4+\frac{1}{x^2-x}\)
5. cho x,y là 2 số thỏa mãn \(2x^2+\frac{1}{x^2}+\frac{y}{4}=4\).tìm min max của xy
6. cho a,b>0 và a+b=1. tìm min M=\(\left(1+\frac{1}{a}\right)^2\left(1+\frac{1}{b}\right)^2\)
Cho x;y là hai số thực khác 0 thỏa mãn : \(5x^2+\frac{y^2}{4}+\frac{1}{4x^2}=\frac{5}{2}\)
Tìm MIN và MAX của biểu thức : \(A=2013-xy\)
Đặt \(B=xy=2013-A\) thế vô cái cần tìm thì được
\(5x^2+\frac{y^2}{4}+\frac{1}{4x^2}=\frac{5}{2}\)
\(\Leftrightarrow x^2y^2+20x^4-10x^2+1=0\)
\(\Leftrightarrow20x^4-10x^2+1+B^2=0\)
\(\Leftrightarrow B^2=\frac{1}{4}-\left(\sqrt{20}x^2-\frac{\sqrt{5}}{2}\right)^2\le\frac{1}{4}\)
\(\Leftrightarrow-\frac{1}{2}\le B\le\frac{1}{2}\)
\(\Leftrightarrow-\frac{1}{2}\le2013-A\le\frac{1}{2}\)
\(\Leftrightarrow2012,3\le A\le2013,5\)
bạn chưa ghi gtnn , gtln xảy ra khi x=? và y=?
1. Cho x,y là 2 số thực khác 0 thỏa mãn :5x2 +\(\frac{y^2}{4}\)+\(\frac{1}{4x^2}\)=\(\frac{5}{2}\).Tìm min, max của A=2013-xy
2.Cho x,y>0 thỏa mãn x+y=1.Tìm min của A=\(\frac{1}{x^2+y^2}\)+\(\frac{2}{xy}\)+4xy
3.Cho x,y là 2 số dương thoả mãn x+\(\frac{1}{y}\)\(\le\)1. Tìm min của C=32.\(\frac{x}{y}\)+2011.\(\frac{y}{x}\)
4.Cho x,y là 2 số thực dương thỏa mãn x+y=\(\frac{5}{4}\). Tìm min của A=\(\frac{4}{x}\)+\(\frac{1}{4y}\)
5.Giải phương trình : \(\frac{1}{\sqrt{x+3}+\sqrt{x+2}}\)+\(\frac{1}{\sqrt{x+2}+\sqrt{x+1}}\)+\(\frac{1}{\sqrt{x+1}+\sqrt{x}}\)=1
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
Các bạn ơi giúp mình với ạ, cảm ơn nhiều!
dong y quan diem @aliba
bo xung them. nhieu qua khi tra loi phan cau hoi troi len khoi man hinh =>" ko nhin duoc de bai"
(da khong biet lai con luoi dang cau hoi nua)