Cho tam giác ABC vuông tại A đường cao AH gọi I,K theo thứ tự là hình chiêú vuông góc cua H lên AB,AC . CHỨNG MINH AI . AB=AK . AC
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E theo thứ tự là chân đường vuông góc kẻ từ H đến AB và AC. Chứng minh AH=DE. Gọi I, K theo thứ tự là trung điểm của HB và HC. chứng minh tứ giác IDKE là hình thang vuông. Tính độ dài đường trung bình của hình thang DIKE biết : AB=6cm, AC=8cm.
a: Xét tứ giác ADHE có
\(\widehat{EAD}=\widehat{AEH}=\widehat{ADH}=90^0\)
Do đó: ADHE là hình chữ nhật
Suy ra: AH=DE
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E theo thứ tự là chân đường vuông góc kẻ từ H đến AB, AC
a, Chứng minh AH=DE
b, Gọi I, K theo thứ tự là trung điểm của HB và HC. Chứng minh tứ giác IDKE là hình thang vuông
cho tam giác ABC vuông tại A , đường cao AH . gọi I , K theo thứ tự là hình chiếu của H trên AB ,AC . Gọi M là trung điểm của BC . Chứng minh rằng : AM vuông góc với IK
Gọi O là giao điểm của AH và IK, N là giao điểm của AM và IK. Ta có
MAK = MCK, OKA = OAK nên
MAK + OKA = MCK + OAK = 90 độ
Do đó AM vuông góc IK
Gọi G là giao điểm của AH và IK, O là giao điểm của AM và IK.
Do AM là trung tuyến ứng với cạnh huyền của tam giác ABC vuông tại A nên AM = MC.
\(\Rightarrow\Delta AMC\)cân tại M\(\Rightarrow\widehat{MCA}=\widehat{MAC}\)(1)
Dễ thấy AIHK là hình chữ nhật. Vì vậy GA = GK ( do G là giao điểm của hai đường chéo AH và IK)
\(\Rightarrow\Delta AGK\)cân tại G\(\Rightarrow\widehat{GAK}=\widehat{GKA}\)(2)
Cộng vế theo vế (1) và (2), ta được:
\(\widehat{MAC}+\widehat{GKA}=\widehat{MCA}+\widehat{GAK}=90^0\)(do tam giác AHC vuông tại H)
\(\Rightarrow\widehat{MAC}+\widehat{GKA}=90^0\)
\(\Rightarrow\Delta OAK\)vuông tại O hay \(AM\perp IK\)
Vậy \(AM\perp IK\)(đpcm)
cho tam giác ABC vuông tại A đường cao AH. Gọi I,K theo thứ tự là hình chiếu của H trên AB,AC. Gọi M là trung điểm của BC. Chứng minh rằng AM vuông góc với IK
Cho tam giác ABC vuông tại A, đường cao AH. Gọi I, K theo thứ tự là hình bình chiếu của H trên AB, AC. Gọi M là trung điểm của BC. Chứng minh rằng AM vuông góc với IK.
Cho tam giác ABC vuông tại A vẽ đường cao AH , AB = 6cm , AC = 8cm
a, chứng minh tam giác HBA đồng dạng với tam giác ABC
b, tính BC,AH,BH
c, Gọi I và K lần lượt hình chiếu của điểm H lên cạnh AB,AC , chứng minh AI*AB=AK*AC
cho tam giác ABC vuông tại A , đường cao AH . gọi I , K theo thứ tự là hình chiếu của H trên AB ,AC . Gọi M là trung điểm của BC . Chứng minh rằng : AM vuông góc với IK
Cho tam giác ABC vuông tại A ,đường cao AH ,Gọi D,E theo thứ tự là chân các đường vuông góc kẻ từ H đến AB,AC a.Chứng minh tứ giác ADHE là hình chữ nhật b.Gọi I là trung điểm của HB ,Chứng minh DI vuông góc với DE c.Gọi K là trung điểm của HC .Chứng minh IDEK là hình thang vuông d.Giả sử DI = 1 cm ; EK = 4cm và AH = 6 cm .Tính diện tích tam giác ABC
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
b: ΔHDB vuông tại D
mà DI là đường trung tuyến
nên \(DI=IH=IB\)
Xét ΔIHD có IH=ID
nên ΔIHD cân tại I
=>\(\widehat{IHD}=\widehat{IDH}\)
mà \(\widehat{IHD}=\widehat{HCA}\)(hai góc đồng vị, HD//AC)
nên \(\widehat{IDH}=\widehat{HCA}\)
ADHE là hình chữ nhật
=>\(\widehat{EAH}=\widehat{EDH}\)
=>\(\widehat{EDH}=\widehat{HAC}\)
\(\widehat{IDE}=\widehat{IDH}+\widehat{EDH}\)
\(=\widehat{HAC}+\widehat{HCA}\)
\(=90^0\)
=>DI\(\)\(\perp\)DE
c: ΔCEH vuông tại E
mà EK là đường trung tuyến
nên EK=KH=KC
Xét ΔKEH có KE=KH
nên ΔKEH cân tại K
=>\(\widehat{KEH}=\widehat{KHE}\)
mà \(\widehat{KHE}=\widehat{CBA}\)(hai góc đồng vị, HE//AB)
nên \(\widehat{KEH}=\widehat{CBA}=\widehat{HBA}\)
ADHE là hình chữ nhật
=>\(\widehat{HAD}=\widehat{HED}\)
=>\(\widehat{HED}=\widehat{HAB}\)
\(\widehat{KED}=\widehat{KEH}+\widehat{DEH}\)
\(=\widehat{HAB}+\widehat{HBA}=90^0\)
=>KE\(\perp\)DE
Ta có: KE\(\perp\)DE
ID\(\perp\)KE
Do đó: ID//KE
Xét tứ giác KEDI có
KE//DI
KE\(\perp\)ED
Do đó: KEDI là hình thang vuông
d: DI=1cm
mà HB=2DI
nên HB=2*1=2=2cm
EK=4cm
mà CH=2EK
nên \(CH=2\cdot4=8cm\)
BC=BH+CH
=2+8
=10cm
Xét ΔABC có AH là đường cao
nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot6\cdot10=30\left(cm^2\right)\)
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D và E theo thứ tự là chân đường vuông góc kẻ từ H đến AB, AC.
a) Chứng minh AH = DE.
b) Gọi I và K theo thứ tự là trung điểm của HB và HC. Chứng minh tứ giác DIKE là hình thang vuông.
c) Tính độ dài đường trung bình của hình thang DIKE nếu biết AB = 6cm, AC = 8cm.
a) chứng minh AH = DE
Xét tứ giác ADHE, ta có
góc HDA = góc DAE = góc AEH = 90o
nên tứ giác ADHE là hình chữ nhật
AH và DE là hai đường chéo trong hình chữ nhật ADHE nên chúng bằng nhau
b) chứng minh DIKE là hình thang vuông
* Gọi F là giao điểm của AH và DE
theo tính chất của đường chéo trong hình chữ nhật thì F là trung điểm của AH và DE, do đó tam giác FDH là tam giác cân tại F
nên góc FHD = góc FDH (1)
* DI là trung tuyến trong tam giác DBH vuông tại D nên DI = IH, do đó tam giác IDH là tam giác cân tại I
nên góc IHD = góc IDH (2)
* mặt khác góc IHD + góc FHD = góc FHI = 90o (3)
từ (1), (2), (3) suy ra góc IDH + góc FDH = góc IDF = 90o
chứng minh tương tự ta được góc FEK = 90o
tứ giác DIKE có 2 góc kề nhau là góc IDF và góc FEK đều là góc vuông nên nó là hình thang vuông.
c) tính độ dài đường trung bình của hình thang DIKE (tạm gọi là y)
y = 0.5 (ID + KE) = 0.5 (0.5 BH + 0.5 CH) = 0.25 BC
theo định lý pytago thì BC2 = AB2 + AC2 = 100 => BC = 10 => y = 2.5.
Cho mk hỏi tại sao DI là trung tuyến của tam giác vuông DBH thì tại sao mà DI lại = IH đc ?