y x \(\dfrac{11}{12}\) + y x \(\dfrac{3}{4}\) = \(\dfrac{10}{11}\)
4) \(\dfrac{x}{0,5}=\dfrac{y}{0,3}=\dfrac{z}{0,2}\) và -y+x=1
6) \(\dfrac{x+11}{13}=\dfrac{y+12}{14}=\dfrac{z+13}{15}\)và x+y+z=6
7) 5x=4y và x.y=20
7) 5x=4y ⇒\(\dfrac{x}{4}=\dfrac{y}{5}\)
Nhân cả hai vế với \(\dfrac{x}{4}\), ta có: \(\left(\dfrac{x}{4}\right)^2=\dfrac{x}{4}.\dfrac{y}{5}=\dfrac{xy}{20}=\dfrac{20}{20}=1\)
\(\left(\dfrac{x}{4}\right)^2=1\Rightarrow\left[{}\begin{matrix}\dfrac{x}{4}=1\\\dfrac{x}{4}=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}y=5\\y=-5\end{matrix}\right.\)
4) áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{0,5}=\dfrac{y}{0,3}=\dfrac{z}{0,2}=\dfrac{z-y+x}{0,2-0,3+0,5}=\dfrac{1}{\dfrac{2}{5}}=\dfrac{5}{2}\)
\(\dfrac{x}{0,5}=\dfrac{5}{2}\Rightarrow x=\dfrac{5}{4}\)
\(\dfrac{y}{0,3}=\dfrac{5}{2}\Rightarrow y=\dfrac{3}{4}\)
\(\dfrac{z}{0,2}=\dfrac{5}{2}\Rightarrow z=\dfrac{1}{2}\)
6) áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x+11}{13}=\dfrac{y+12}{14}=\dfrac{z+13}{15}=\dfrac{x+11+y+12+z+13}{13+14+15}=\dfrac{42}{42}=1\)
\(\dfrac{x+11}{13}=1\Rightarrow x=2\)
\(\dfrac{y+12}{13}=1\Rightarrow y=1\)
\(\dfrac{z+13}{15}=1\Rightarrow z=2\)
7) \(5x=4y\Rightarrow\dfrac{x}{4}=\dfrac{y}{5}=k\)
\(\Rightarrow x=4k,y=5k\)
\(x.y=20\\ \Rightarrow4k.5k=20\\ \Rightarrow20k^2=20\\ \Rightarrow k^2=1\\ \Rightarrow\left[{}\begin{matrix}k=-1\\k=1\end{matrix}\right.\)
\(x=4k\Rightarrow\left[{}\begin{matrix}x=-4\\x=4\end{matrix}\right.\)
\(y=5k\Rightarrow\left[{}\begin{matrix}y=-5\\y=5\end{matrix}\right.\)
Vậy \(\left(x,y\right)=\left\{\left(-4;-5\right);\left(4;5\right)\right\}\)
Tính:
a) \(\dfrac{11}{10}+\dfrac{3}{5}:\dfrac{2}{3}\)
b) \(\dfrac{4}{3}\) + 5 x \(\dfrac{5}{8}\)
c) \(\left(\dfrac{2}{5}+\dfrac{3}{7}\right)x\dfrac{25}{29}\)
d) \(\dfrac{1}{4}x\dfrac{5}{12}+\dfrac{5}{12}x\dfrac{4}{5}\)
a) \(\dfrac{11}{10}+\dfrac{3}{5}:\dfrac{2}{3}=\dfrac{11}{10}+\dfrac{3}{5}\times\dfrac{3}{2}=\dfrac{11}{10}+\dfrac{9}{10}=\dfrac{20}{10}=2\)
b) \(\dfrac{4}{3}+5\times\dfrac{5}{8}=\dfrac{4}{3}+\dfrac{25}{8}=\dfrac{32}{24}+\dfrac{75}{24}=\dfrac{107}{24}\)
c) \(\left(\dfrac{2}{5}+\dfrac{3}{7}\right)\times\dfrac{25}{29}=\left(\dfrac{14}{35}+\dfrac{15}{35}\right)\times\dfrac{25}{39}=\dfrac{29}{35}\times\dfrac{25}{39}=\dfrac{145}{274}\)
d) \(\dfrac{1}{4}\times\dfrac{5}{12}+\dfrac{5}{12}\times\dfrac{4}{5}=\dfrac{5}{12}\times\left(\dfrac{1}{4}+\dfrac{4}{5}\right)=\dfrac{5}{12}\times\dfrac{21}{20}=\dfrac{105}{240}=\dfrac{7}{16}\)
a) \(\dfrac{11}{10}+\dfrac{3}{5}x\dfrac{3}{2}=\dfrac{11}{10}+\dfrac{9}{10}=\dfrac{20}{10}=2\)
b) \(\dfrac{4}{3}+\dfrac{25}{8}=\dfrac{32}{24}+\dfrac{75}{24}=\dfrac{107}{24}\)
c) \(\dfrac{29}{35}x\dfrac{25}{29}=\dfrac{5}{7}\)
\(=\dfrac{5}{12}x\left(\dfrac{1}{4}+\dfrac{4}{5}\right)=\dfrac{5}{12}x\dfrac{21}{20}=\dfrac{7}{16}\)
1 tìm các số hữu tỉ x,y thỏa mãn 3x=2y và x+y=-15
2 tìm các số hữu tỉ x,y biết rằng
a) x+y-z=20 và \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
b)\(\dfrac{x}{11}=\dfrac{y}{12};\dfrac{y}{3}=\dfrac{z}{7}\) và 2x-y+z=152
3) chia số 552 thành ba phần tỉ lệ nghịch 3;4;5 tính giá trị từng phần?
chia số 315 thành 3 phần tỉ lệ nghịch với 3:4:6. tính giá trị mỗi phần?
4 cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) chứng minh rằng
a)\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
b)\(\dfrac{5a+2c}{5a+2d}=\dfrac{a-4c}{b-4d}\)
c\(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Các bạn giúp mình với nhé mình dang cần gấp.mình xin cảm ơn
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
Bài 2:
b) Ta có: \(\dfrac{y}{3}=\dfrac{z}{7}\)
nên \(\dfrac{y}{12}=\dfrac{z}{28}\)
mà \(\dfrac{x}{11}=\dfrac{y}{12}\)
nên \(\dfrac{x}{11}=\dfrac{y}{12}=\dfrac{z}{28}\)
hay \(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}\)
mà 2x-y+z=152
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}=\dfrac{2x-y+z}{22-12+28}=\dfrac{152}{38}=4\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{11}=4\\\dfrac{y}{12}=4\\\dfrac{z}{28}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=44\\y=48\\z=112\end{matrix}\right.\)
Vậy: (x,y,z)=(44;48;112)
bài 11.rút gọn biểu thức:
\(a,\dfrac{9x^2}{11y^2}:\dfrac{3x}{2y}:\dfrac{6x}{11y}\) \(b,\dfrac{3x+15y}{x^3-y^3}:\dfrac{x+5y}{x-y}\)
\(c,\dfrac{x^2-1}{x^2-4x+4}:\dfrac{x+1}{2-x}\) \(d,\dfrac{5x+10}{x+2}:\dfrac{5y}{x}\)
\(e,\dfrac{2x}{3x-3y}:\dfrac{x^2}{x-y}\) \(f,\dfrac{5x-3}{4x^2y}-\dfrac{x-3}{4x^2y}\)
\(g,\dfrac{3x+10}{x+3}-\dfrac{x+4}{x+3}\) \(h,\dfrac{4}{x-1}+\dfrac{2}{1-x}+\dfrac{x}{x-1}\)
\(i,\dfrac{2x^2-x}{x-1}+\dfrac{x+1}{1-x}+\dfrac{2-x^2}{x-1}\) \(j,\dfrac{x-2}{x-6}-\dfrac{x-18}{6-x}+\dfrac{x+2}{x-6}\)
\(k,\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\) \(m,\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
\(n,\dfrac{3}{x+3}-\dfrac{x-6}{x^2+3x}\) \(p,\dfrac{x+3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\)
f: \(=\dfrac{5x-3-x+3}{4x^2y}=\dfrac{4x}{4x^2y}=\dfrac{1}{xy}\)
g: \(=\dfrac{3x+10-x-4}{x+3}=\dfrac{2x+6}{x+3}=2\)
h: \(=\dfrac{4-2+x}{x-1}=\dfrac{x+2}{x-1}\)
n: \(=\dfrac{3x-x+6}{x\left(x+3\right)}=\dfrac{2\left(x+3\right)}{x\left(x+3\right)}=\dfrac{2}{x}\)
p: \(=\dfrac{x^2-9-x^2+9}{x\left(x-3\right)}=0\)
k: \(=\dfrac{x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{-6}{x^2-4}\)
m: \(=\dfrac{3x-x+6}{x\left(2x+6\right)}=\dfrac{2x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)
tìm x :
a) \(\dfrac{x+1}{7}+\dfrac{x+1}{8}=\dfrac{x+1}{9}+\dfrac{x+1}{10}\)
b) \(\dfrac{x+1}{12}+\dfrac{x^2}{11}=\dfrac{x+3}{10}+\dfrac{x+4}{9}\)
c) \(\dfrac{x-2}{x-1}=\dfrac{x+4}{x+7}\)
d)\(\dfrac{3x+2}{5x+7}=\dfrac{3x-1}{5x-3}\)
2 tìm x,y,z
a) \(\dfrac{x}{2}=\dfrac{y}{3},\dfrac{y}{4}=\dfrac{z}{5}vàx^2-y^2=-16\)
b)2x=3y,5x=7z và 3x-7y+5z=30
ok giúp t thêm vài câu nữa đi :')
Tính hợp lý \(\dfrac{2}{11}\)-\(\dfrac{3}{8}\)+\(\dfrac{4}{11}\)-\(\dfrac{6}{11}\)-\(\dfrac{5}{8}\)
Số x thoả mãn \(\dfrac{1}{4}\)+\(\dfrac{x}{12}\)=\(\dfrac{8}{12}\)
Tìm x biết \(\dfrac{1}{2}\)-(x-\(\dfrac{5}{11}\))=\(\dfrac{-3}{4}\)
An đọc 1 quyển sách trong 3 ngày. Ngày thứ nhất An đọc đc \(\dfrac{1}{11}\) quyển sách,ngày thứ hai An đọc đc \(\dfrac{8}{11}\) quyển sách.Hỏi trong 2 ngày An đọc đc bao nhiêu phần quyển sách?
Bài 1 :
\(=\dfrac{2}{11}+\dfrac{4}{11}-\dfrac{6}{11}-\dfrac{3}{8}-\dfrac{5}{8}=0-1=-1\)
Bài 2 :
\(\Rightarrow3+x=8\Leftrightarrow x=5\)
Bài 3 :
\(\Leftrightarrow x-\dfrac{5}{11}=\dfrac{5}{4}\Leftrightarrow x=\dfrac{35}{44}\)
Bài 4 :
Trong 2 ngày An đọc được số quyên phần quyên sách
\(\dfrac{1}{11}+\dfrac{8}{11}=\dfrac{9}{11}\)( quyển sách )
đs : 9/11 quyển sách
Tìm x , y , z , biết \(\dfrac{x}{4}=\dfrac{y}{3};\dfrac{y}{6}=\dfrac{z}{11}\) và x . y . z = - 528.
\(\Rightarrow\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{11}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=8k\\y=6k\\z=11k\end{matrix}\right.\)\(\Rightarrow xyz=528k^3=-528\Rightarrow k=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=8.\left(-1\right)=-8\\y=6.\left(-1\right)=-6\\z=11.\left(-1\right)=-11\end{matrix}\right.\)
\(\dfrac{5}{4-\sqrt{11}}+\dfrac{1}{3+\sqrt{7}}-\dfrac{6}{\sqrt{7}-2}-\dfrac{\sqrt{7}-5}{2}=4+\sqrt{11}-3\sqrt{7}\)
\(\dfrac{\sqrt{x}+\sqrt{y}}{2\left(\sqrt{x}-\sqrt{y}\right)}-\dfrac{\sqrt{x}-\sqrt{y}}{2\left(\sqrt{x}+\sqrt{y}\right)}-\dfrac{y+x}{y-x}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(\dfrac{5\left(4+\sqrt{11}\right)}{\left(4+\sqrt{11}\right)\left(4-\sqrt{11}\right)}+\dfrac{3-\sqrt{7}}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}-\dfrac{6\left(\sqrt{7}+2\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}-\dfrac{\sqrt{7}-5}{2}\)\(=\dfrac{\left(4+\sqrt{11}\right)5}{16-11}+\dfrac{3-\sqrt{7}}{9-7}-\dfrac{6\left(\sqrt{7}+2\right)}{7-4}-\dfrac{\sqrt{7}-5}{2}\)
\(=4+\sqrt{11}-\dfrac{3-\sqrt{7}}{2}-2\left(\sqrt{7}+2\right)-\dfrac{\sqrt{7}-5}{2}=\dfrac{8+2\sqrt{11}-3+\sqrt{7}-4\sqrt{7}-8-\sqrt{7}+5}{2}=\dfrac{2\sqrt{11}-4\sqrt{7}+2}{2}=1+\sqrt{11}-2\sqrt{7}\)
\(\left\{{}\begin{matrix}\dfrac{1}{\left|x+3\right|}+\dfrac{4}{\left|y\right|-2}=\dfrac{11}{6}\\\dfrac{5}{\left|x+3\right|}+\dfrac{2}{\left|y\right|-2}=\dfrac{11}{6}\end{matrix}\right.\)
\(Đặt:\left\{{}\begin{matrix}a=\dfrac{1}{\left|x+3\right|}\left(ĐK:x\ne-3\right)\\b=\dfrac{1}{\left|y\right|-2}\left(ĐK:y\ne\pm2\right)\end{matrix}\right.\\ Có:\left\{{}\begin{matrix}\dfrac{1}{\left|x+3\right|}+\dfrac{4}{\left|y\right|-2}=\dfrac{11}{6}\\\dfrac{5}{\left|x+3\right|}+\dfrac{2}{\left|y\right|-2}=\dfrac{11}{6}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+4b=\dfrac{11}{6}\\5a+2b=\dfrac{11}{6}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a+4b=\dfrac{11}{6}\\10a+4b=\dfrac{22}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-9a=-\dfrac{11}{6}\\a+4b=\dfrac{11}{6}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{11}{54}\\b=\dfrac{\dfrac{11}{6}-\dfrac{11}{54}}{4}=\dfrac{11}{27}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{\left|x+3\right|}=a=\dfrac{11}{54}\\\dfrac{1}{\left|y\right|-2}=b=\dfrac{11}{27}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}11\left|x+3\right|=54\\11\left(\left|y\right|-2\right)=27\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left|x+3\right|=\dfrac{54}{11}\\\left|y\right|=\dfrac{27}{11}+2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+3=\dfrac{54}{11}\\x+3=\dfrac{-54}{11}\end{matrix}\right.\\\left[{}\begin{matrix}y=\dfrac{27}{11}+2\\y=-\left(\dfrac{27}{11}+2\right)\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{21}{11}\left(TM\right)\\x=\dfrac{-87}{11}\left(TM\right)\end{matrix}\right.\\\left[{}\begin{matrix}y=\dfrac{49}{11}\left(TM\right)\\y=-\dfrac{49}{11}\left(TM\right)\end{matrix}\right.\end{matrix}\right.\\ Vậy:\left(x;y\right)=\left\{\left(\dfrac{21}{11};\dfrac{49}{11}\right);\left(\dfrac{-87}{11};\dfrac{49}{11}\right);\left(\dfrac{21}{11};\dfrac{-49}{11}\right);\left(\dfrac{-87}{11};\dfrac{-49}{11}\right)\right\}\)