Tìm n € z , để :
( n^2 + 3n + 5 ) ⁝ 3 +n
🤍
1. Tìm n thuộc z để n3 + n2- n +5 chia hết cho n+2
2. Tìm n thuộc z để n3 + 3n -5 chia hết cho n2 +2
Tìm n thuộc Z để:
(n-1)/(3n+3) € Z
(n+2)/(n^2+3) € Z
Bài 1 :
Tìm N thuộc Z để giá trị biểu thức n3 + n2 - n + 5 chia hết cho giá trị biểu thức n + 2
Tìm N thuộc Z để giá trị biểu thức n3 + 3n - 5 chia hết cho giá trị biểu thức n2 + 2 .
1: Cho A = \(\frac{n+3}{n+1}\) tìm n thuộc Z để A thuộc Z
2: Cho b = \(\frac{3n-5}{n-4}\)tìm n thuộc Z để B thuộc Z
A=n+3 chia hết cho n+1
mà n+3 =(n+1)+2
vì n+1 chia hết cho n+1
nên A chia hết cho n+1
khi2chia hết cho n+1
suy ra n+1 thuộc ước của 2
suy ra n+1 thuộc {1;2}
mà n thuộc Z Suy ra n thuộc { 0;1}
Câu 2 dựa theo cách trên mà tự làm
\(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=\frac{n+1}{n+1}+\frac{2}{n+1}=1+\frac{2}{n+1}\)
Để \(A\in Z\)<=> n + 1 \(\in\)Ư(2) = {-1;1;-2;2}
n + 1 | -1 | 1 | -2 | 2 |
n | -2 | 0 | -3 | 1 |
\(\frac{3n-5}{n-4}=\frac{3n-12-17}{n-4}=\frac{3\left(n-4\right)-17}{n-1}=\frac{3\left(n-4\right)}{n-4}-\frac{17}{n-4}\)
Để \(B\in Z\) <=> n - 4 \(\in\)Ư(17) = {1;-1;17;-17}
n - 4 | 1 | -1 | 17 | -17 |
n | 5 | 3 | 21 | -13 |
Tìm n thuộc Z để:
( n-1 ) / ( 3n+3 ) thuộc Z( n+2 ) / ( n^2+3 ) thuộc ZMk hướng dẫn,bn tự giải :
Tìm n \(\in\)Z để các p/s đó \(\in\)Z
=> Cần chứng minh tử \(⋮\)mẫu
Tìm n thuộc Z để n mũ 2 +3n-5 là bội của n-2
a)Cho biểu thức A=\(\dfrac{-5}{n-2}\)
Tìm các số tự nhiên n để biểu thức A là số nguyên
b)Tìm n ϵ z để (4n-3) ⋮ (3n-2)
Các bạn giúp mình nha :))
a, Tìm n thuộc Z để g trị biểu thức \(n^3+n^2-n+5\) chia hết cho g trị biểu thức n+2
b, Tìm n thuộc Z để g trị bt \(n^3+3n-5\) chia hết cho g trị bt \(n^2+2\)
a, n3+n2-n+5 chia hết cho n+2
=> n3+2n2-n2-2n+n+2+3 chia hết cho n+2
=> n2(n+2)-n(n+2)+(n+2)+3 chia hết cho n+2
=> (n+2)(n2-n+1) +3 chia hết cho n+2
Mà (n+2)(n2-n+1) chia hết cho n+2
=> 3 chia hết n+2
Mà n+2 thuộc Z => n+2 thuộc Ư(3)={-3,-1,1,3}
=> n=-5,-3,-2,1
tìm n thuộc z để
a,n^3-n chia hết cho n-2
b, n^3-3n^2-3n-1 chia hết cho n^2+n+1
a: \(\Leftrightarrow n^3-2n^2+2n^2-4n+3n-6+6⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
b: \(\Leftrightarrow n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
\(\Leftrightarrow n^2+n+1\in\left\{1;3\right\}\)
\(\Leftrightarrow\left[{}\begin{matrix}n\left(n+1\right)=0\\n^2+n-2=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)