Tìm x:
a) 13 - 2 ( x + 1 ) = 7
b) 15x - 13x = 122 + 56 . 6
Giúp mk với!
Tìm x :
a) 13 - 2 ( x + 1 ) = 7
b) 15x - 13x = 122 + 56 . 6
Giúp mk với!
13 - 2 ( x + 1 ) = 7
2 ( x + 1 ) = 13 - 7
2 ( x + 1 ) = 6
x + 1 = 6:2
x + 1 = 3
x = 3 - 1
x = 2
Bạn Tham Khảo Nha!
A) 13-2(x+1)=7
2(x+1)=13-7
2(x+1)=6
x+1=6:2
x+1=3
x=3-1
x=2
Tìm x:
a) (2x-3)2+6(2x-1)=7
b) x2-7x+10=0
c) -6x2+13x-5=0
d) x4+7x2-18=0
a: Ta có: \(\left(2x-3\right)^2+6\left(2x-1\right)=7\)
\(\Leftrightarrow\left(2x-3\right)^2+6\left(2x-1\right)-7=0\)
\(\Leftrightarrow4x^2-12x+9+12x-6-7=0\)
\(\Leftrightarrow4x^2=4\)
\(\Leftrightarrow x^2=1\)
hay \(x\in\left\{1;-1\right\}\)
b: Ta có: \(x^2-7x+10=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
Tìm x:
a) (2x-3)2+6(2x-1)=7
b) x2-7x+10=0
c) -6x2+13x-5=0
d) x4+7x2-18=0
a) \(\left(2x-3\right)^2+6\left(2x-1\right)=7\\ \Rightarrow4x^2-12x+9+12x-6-7=0\\ \Rightarrow4x^2-4=0\\ \Rightarrow x^2-1=0\\ \Rightarrow x^2=1\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
b) \(x^2-7x+10=0\\ \Rightarrow\left(x^2-2x\right)-\left(5x-10\right)=0\\ \Rightarrow\left(x-2\right)\left(x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
c) \(-6x^2+13x-5=0\\ \Rightarrow-\left(6x^2-13x+5\right)=0\\ \Rightarrow-\left[\left(6x^2-10x\right)-\left(3x-5\right)\right]=0\\ \Rightarrow-\left[2x\left(3x-5\right)-\left(3x-5\right)\right]=0\\ \Rightarrow-\left(2x-1\right)\left(3x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-\left(2x-1\right)=0\\3x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x-1=0\\3x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{5}{3}\end{matrix}\right.\)
d) \(x^4+7x^2-18=0\\ \Rightarrow\left(x^4-4\right)+\left(7x^2-14\right)=0\\ \Rightarrow\left(x^2-2\right)\left(x^2+2\right)+7\left(x^2-2\right)=0\\ \Rightarrow\left(x^2-2\right)\left(x^2+9\right)=0\\ \Rightarrow\left[{}\begin{matrix}x^2-2=0\\x^2+9=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\pm\sqrt{2}\\x^2=-9\left(loại\right)\end{matrix}\right.\)
1/x^2+9x+20+1/x^2+11x+30+1/x^2+13x+42+1/x^2-15x+56=\(\frac{4}{x^2-11x+2020}\)
Chứng minh biểu thức luôn dương với mọi x:
a) A=x^2+4x+7
b) B=x^2-10x+29
c) C=4x^2+4x+5
d) D=x^2-x+5
e) E=2x^2-3x+13
Tìm x:
a, 4.( x + 41 ) = 7
b, 4. ( x-3 ) = 7 mũ 2 - 1 mũ 10
a. 4.(x+41) = 7
x + 41 = 7 : 4 = 1,75
x = 1,75 - 41 = -39,25
b. 4.(x-3) = 72 - 110 = 49 - 1 = 48
x - 3 = 48 : 4 = 12
x = 12 + 3 = 15
Tìm x:
a) x(2-x)+(x2+x)=7
b) (4-x)2-(2x+1)2=0
c) (4x4-16x-48) : (-2x)2=0
a: Ta có: \(x\left(2-x\right)+x^2+x=7\)
\(\Leftrightarrow2x-x^2+x^2+x=7\)
\(\Leftrightarrow3x=7\)
hay \(x=\dfrac{7}{3}\)
b: Ta có: \(\left(x-4\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left(x-4-2x-1\right)\left(x-4+2x+1\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(3x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)
Tìm x:
a, (x - 1/2) : 1/3 + 5/7 = 9 5/7
b, x + 30% x = - 1,31
c, -2/3.x + 1/5 = 1/10
\(a,\left(x-\dfrac{1}{2}\right):\dfrac{1}{3}+\dfrac{5}{7}=9\dfrac{5}{7}\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right).3=\dfrac{68}{7}-\dfrac{5}{7}\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right).3=9\)
\(\Leftrightarrow x-\dfrac{1}{3}=3\)
\(\Leftrightarrow x=3+\dfrac{1}{3}\)
\(\Leftrightarrow x=\dfrac{9}{3}+\dfrac{1}{3}\)
\(\Leftrightarrow x=\dfrac{10}{3}\)
\(b,x+30\%x=-1,31\)
\(\Leftrightarrow x+\dfrac{3}{10}.x=-\dfrac{131}{100}\)
\(\Leftrightarrow x.\left(1+\dfrac{3}{10}\right)=-\dfrac{131}{100}\)
\(\Leftrightarrow x.\dfrac{13}{10}=-\dfrac{131}{100}\)
\(\Leftrightarrow x=-\dfrac{131}{100}.\dfrac{10}{13}\)
\(\Leftrightarrow x=-\dfrac{131}{130}\)
\(c,-\dfrac{2}{3}x+\dfrac{1}{5}=\dfrac{1}{10}\)
\(\Leftrightarrow\dfrac{-2}{3}x=\dfrac{1}{10}-\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{-2}{3}x=\dfrac{1}{10}-\dfrac{2}{10}\)
\(\Leftrightarrow-\dfrac{2}{3}x=-\dfrac{1}{10}\)
\(\Leftrightarrow x=-\dfrac{1}{10}.\left(-\dfrac{3}{2}\right)\)
\(\Leftrightarrow x=\dfrac{3}{20}\)
Tìm x:
a)√x^2=7
b)√x^2=8
c)√4x^2=6
d)√9x^2=|-12|
a) \(\sqrt{x^2}=7\)⇒\(\left(\sqrt{x^2}\right)^2=49\)⇒x=7 hoặc -7
b) \(\sqrt{x^2}=8\)⇒\(\left(\sqrt{x^2}\right)=64\)⇒x=8 hoặc -8
c) \(\sqrt{4x^2}=6\)⇒\(\left(\sqrt{\left(2x\right)^2}\right)^2=36\)⇒x=3 hoặc -3
d) \(\sqrt{9x^2}=\left|-12\right|\)⇒\(\left(\sqrt{\left(3x\right)^2}\right)^2=144\)⇒x=12 hoặc -12
a. \(\sqrt{x^2}=7\)
<=> \(|x|=7\)
<=> \(\left[{}\begin{matrix}x=7\\x=-7\end{matrix}\right.\)
b. \(\sqrt{x^2}=8\)
<=> \(|x|=8\)
<=> \(\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)
c. \(\sqrt{4x^2}=6\)
<=> \(|2x|=6\)
<=> \(\left[{}\begin{matrix}2x=6\\2x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)