x^3+9x^2+27x+27
`1-27x^3`
`x-3^3 +27`
`27x^3 +27x^2 +9x+1`
`(x^6)/27 - (x^4 y)/3 +x^2 y-y^3`
Phân tích thành nhân tử
\(1-27x^3\)
\(=1-\left(3x\right)^3\)
\(=\left(1-3x\right)\left(1+3x+9x^2\right)\)
\(---\)
\(x-3^3+27\)
\(=x-27+27=x\)
\(---\)
\(27x^3+27x^2+9x+1\)
\(=\left(3x\right)^3+3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2+1^3\)
\(=\left(3x+1\right)^3\)
\(---\)
\(\dfrac{x^6}{27}-\dfrac{x^4y}{3}+x^2y^2-y^3\) (sửa đề)
\(=\left(\dfrac{x^2}{3}\right)^3-3\cdot\left(\dfrac{x^2}{3}\right)^2\cdot y+3\cdot\dfrac{x^2}{3}\cdot y^2-y^3\)
\(=\left(\dfrac{x^2}{3}-y\right)^3\)
#Ayumu
1-27x\(^3\)
=(1-3x)(1+3x+9x\(^2\)
x3 + 9x2 + 27x + 27 = 0
( x - 2 ) x - x2 (x - 6) = 4
27x3 - 27x2 + 9x - 1 = 8
(x - 1 )3 - (x + 3) . (
a: \(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+9x\left(x+3\right)=0\)
=>(x+3)(x^2+6x+9)=0
=>x=-3
b: \(\Leftrightarrow x^2-2x-x^3+6x^2-4=0\)
=>-x^3+6x^2-2x-4=0
hay \(x\in\left\{5.5;1.14;-0.64\right\}\)
c: =>(3x-1)^3=8
=>3x-1=2
=>3x=3
=>x=1
x 3 -9x 2 +27x -27 với x=13
a, 27- 27x + 9x^2 -x^3
b, 125 - x^3
c, 16x^3 - 9y^2
a: \(27-27x+9x^2-x^3=\left(3-x\right)^3\)
b: \(125-x^3=\left(5-x\right)\left(25+5x+x^2\right)\)
tính giá trị biểu thức
x^3-9x^2+27x-27 tại x=1
\(x^3-9x^2+27x-27\)
=\(x^3-3.x^2.3+3.x.3^3-3^3\)
\(\left(x-3\right)^3\)
Thay x=1, ta có:
(1-3)3=-23=-8
x^3+9x^2+27x-27=-8 (tìm x )
x3 + 9x2 + 27x + 27 = 0
\(x^3+9x^2+27x+27=0\)
\(\Leftrightarrow\left(x+3\right)^3=0\)
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
KL:..............
x3 + 9x2 + 27x + 27 = 0
x3 + 9x2 + 27x + 27 = 0
<=> x2 + 3.3.x2 + 3.32.x + 33 = 0
<=> (x + 3)3 = 0
<=> x + 3 = 0
<=> x = -3
x3 + 9x2 + 27x +27 = 0
=> x3 + 3.x2.3 + 3.x.32 + 33 = 0
=>( x + 3)3 = 0
=> x + 3 = 0
=> x = -3
Vậy x = -3
x3+9x2+27x+27=0
\(x^3+9x^2+27x+27=0\)
\(x^3+3\times x^2\times3+3\times x\times3^2+3^3=0\)
\(\left(x+3\right)^3=0\)
\(x+3=0\)
\(x=-3\)