cho x,y,z >0 cmr: (x)/(2y+z)+(y)/(2z+x)+(z)/(2x+y)>=1
Cho x, y, z > 0 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\) .
CMR : \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le1\)
Ta có bất đẳng thức AM-GM dạng phân thức sau:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow \dfrac{1}{a+b}\le\dfrac{1}{4}(\dfrac{1}{a}+\dfrac{1}{b})\)
Dấu ''='' xảy ra khi và chỉ khi a=b
Quay lại bài toán: Áp dụng bđt trên, ta có:
\(\dfrac{1}{2x+y+z}=\dfrac{1}{(x+y)+(x+z)}\le\dfrac{1}{4}(\dfrac{1}{x+y}+\dfrac{1}{x+z})\\ \le\dfrac{1}{16}(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{x}+\dfrac{1}{z})=\dfrac{1}{16}(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z})\)
Tương tự:
\(\dfrac{1}{x+2y+z}\le\dfrac{1}{16}(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z})\); \(\dfrac{1}{x+y+2z}\le\dfrac{1}{16}(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z})\)
Cộng 3 phân thức lại, ta có:
\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le\dfrac{1}{4}(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z})=\dfrac{1}{4}.4=1\)
Dấu ''='' xảy ra khi và chỉ khi: \(x=y=z=\dfrac{3}{4}\)
cho x,y,z>0 thỏa mãn 1/x+1/y+1/z=4. Cmr: 1/(2x+y+z)+1/(x+2y+z)+1/(x+y+2z) nhỏ hơn hoặc bằng 1
lớn hơn hoặc bằng ba căn ba nhé bạn. sorry nha, minh quên mất
nhỏ hơn hoặc bằng 1( đề chính xác đấy nhé)
Cho \(x\ge y\ge z>0\)
CMR : \(\dfrac{x^2y}{z}+\dfrac{y^2z}{x}+\dfrac{z^2x}{y}\ge x^2+y^2+z^2\)
Cho x, Y, z, khác 0,,X+y+z khác 0 thỏa mãn
Y+z-2x/x. =z+x-2y/y=x+y-2z
Cmr A =(1+x/y) (1+y/z) (1+z/x)
Là một số tự nhiên
cho x,y,z >0 và 1/x + 1/y +1/z =4
CMR : 1/( 2x+ y+z) + 1/(x+2y+z) + 1/(x+y+2z) < 1
Áp dụng BĐT quen thuộc sau:\(\frac{4}{a+b}\le\frac{1}{a}+\frac{1}{b}\)
\(\frac{16}{2x+y+z}\le\frac{4}{x+y}+\frac{4}{x+z}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{x}+\frac{1}{z}=\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\)
Tương tự:
\(\frac{16}{x+2y+z}\le\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\)
\(\frac{16}{x+y+2z}\le\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\)
Khi đó:\(16VT\le4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=16\)
\(\Rightarrow VT\le1\)
cho x,y,z là 3 cạnh của 1 tam giác , CMR :
2x^2y^2+2^2z^2+2z^2x^2-x^4-y^4-z^4>0
Cho 1/x+1/y+1/z=0.CMR:(x^2y^2+y^2z^2+z^2x^2)^2=2(x^4y^4+y^4z^4+z^4x^4)
cho x,y,z là các số hữu tỉ khác 0 , sao cho 2x+2y-z/z=2x-y+2z/y=-x+2y+2z/x , tính M=(x+y).(y+z).(z+x)/8xyz
Cho x,y,z > 0. CMR :
\(\dfrac{x}{2x+y+z}+\dfrac{y}{2y+x+z}+\dfrac{z}{2z+y+x}\le\dfrac{3}{4}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\dfrac{x}{2x+y+z}=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\dfrac{y}{2y+x+z}\le\dfrac{1}{4}\left(\dfrac{y}{x+y}+\dfrac{y}{y+z}\right);\dfrac{z}{2z+y+x}\le\dfrac{1}{4}\left(\dfrac{z}{y+z}+\dfrac{z}{x+z}\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{x+y}+\dfrac{y}{y+z}\right)+\dfrac{1}{4}\left(\dfrac{z}{y+z}+\dfrac{z}{x+z}\right)\)
\(=\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{y}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{y+z}+\dfrac{x}{x+z}+\dfrac{z}{x+z}\right)\)
\(=\dfrac{1}{4}\left(\dfrac{x+y}{x+y}+\dfrac{y+z}{y+z}+\dfrac{x+z}{x+z}\right)=\dfrac{1}{4}\left(1+1+1\right)=\dfrac{3}{4}\)