CMR: 8n+2- 5n+2+8n-5n chia hết cho 65 và 120 với mọi số n nguyên dương
Chứng tỏ 8n+2-5n+2+8n-5n chia hết cho 65 và 120 với mọi số n nguyên dương
Ta có: \(8^{n+2}+8^n-5^{n+2}-5^n\)
\(=8^n\left(64+1\right)-5^n\left(5^2+1\right)\)
\(=8^n\cdot65-5^{n-1}\cdot130⋮65\)
CMR
a) (5n + 7) x (4n + 6) chia hết cho 2 với mọi n thuộc N
b) (8n + 1) x (6n + 5) chia hết cho 2 với mọi n thuộc N
CMR nếu với mọi n thuộc N
a) (5n+7)(4n+6) chia hết cho 2
b) (8n+1)(6n+5) ko chia hết 2
c) n.(n+1)(2n+1) chia hết cho 6
a) \(\left(5n+7\right)\left(4n+6\right)\)
\(=\left(5n+7\right)4n+\left(5n+7\right)6\)
\(=20n^2+28n+30n+32\)
\(=20n^2+58n+32\)
Vì \(20n^2⋮2\) ; \(58n⋮2\) ; \(32⋮2\) nên \(\left(5n+7\right)\left(4n+6\right)⋮2\)
b) \(\left(8n+1\right)\left(6n+5\right)\)
\(=\left(8n+1\right)6n+\left(8n+1\right)5\)
\(=48n^2+6n+40n+5\)
\(=48n^2+46n+5\)
Vì \(\left(48n^2+46n\right)⋮2\) mà \(5⋮̸2\) nên \(\left(8n+1\right)\left(6n+5\right)⋮̸2\)
c) \(n\left(n+1\right)\left(2n+1\right)\)
\(=n\left(n+1\right)\left(n-1+n-2\right)\)
\(=n\left(n-1\right)\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)
Với \(\forall n\in N\), tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n\left(n-1\right)\left(n+1\right)⋮6\) và \(n\left(n+1\right)\left(n+2\right)⋮6\)
Vậy \(n\left(n+1\right)\left(2n+1\right)⋮6\)
Chứng tỏ rằng
a, (5n+7)(4n+6) chia hết cho 2 với mọi số tự nhiên n
b,(8n+1)(6n+5) không chia hết cho 2 với mọi số tự nhiên n
a,cách 1: ta có: (5n+7)(4n+6)=(5n+7)(2n+3).2 chia hết cho 2
Vậy (5n+7)(4n+6) chia hết cho 2
Cách 2: Ta thấy:4n+6 có chữ số tận cùng là số chẵn=>(5n+7)(4n+6) có chữ số tận cùng là số chẵn.
mà các số có chữ số tận cùng là số chẵn thì số đó chia het cho
vậy (5n+7)(4n+6) chia het cho (đpcm)
b,Ta thấy :8n+1 co chu so tan cung la so le(vi 8n co chu so tan cung la so chan,ma chan+le=le)
6n+5 co chu so tan cung la so le(vi 6n co chu so tan cung la so chan,ma chan+le=le)
từ 2 dieu tren=>(8n+1)(6n+5) co chu so tan cung la so le
vậy (8n+1)(6n+5) khong chia het cho 2 voi moi stn n
câu a bạn nên làm theo cách 2
BT:chứng minh rằng :
a,(5n+7).(4n+6)chia hết cho 2 với mọi số tự nhiên n
b,(8n+1).(6n+5)ko chia hết cho 2 với mọi số tự nhiên n
Biết 2 số: 5n+6 và 8n+7 với n thuộc N là 2 số không nguyên tố cùng nhau, Tìm ƯC của 5n+6 và 8n+7
Chứng tỏ rằng :
a) ( 5n + 7 ) x ( 4n + 6 ) chia hết cho 2 với mọi số tự nhiên n
b) ( 8n + 1 ) x ( 6n + 5 ) không chia hết cho 2 với mọi số tự nhiên n
1)Tìm ước chung của 2 số ab+ba và 33,biết a+b không chia hết cho 3
2)Tìm ước chung của 2 số 2n+1 và 3n+1 với n thuộc các số tự nhiên
3)Biết hai số:5n+6 và 8n+7 với n thuộc các số tự nhiên là 2 số ko nguyên tố cùng nhau.Tìm ước chung của 5n+6 và 8n+7
bài 1:CMR:5n3+15n2+10n chia hết cho 30 với mọi n thuộc Z
bài 2:tìm 4 số nguyên dương liên tiếp, biết rằng tích của chúng =120
\(Ta\)\(có\): \(5n^3+15n+10n=5n\left(n^2+3n+2\right)\)
\(=5n\left[\left(n^2+n\right)+\left(2n+2\right)\right]=5n\left[n\left(n+1\right)+2\left(n+1\right)\right]\)
\(=5n\left(n+1\right)\left(n+2\right)\)
\(Vì\)\(n\left(n+1\right)\left(n+2\right)⋮6\)\(và\) \(5⋮5\)
\(nên\) \(5n\left(n+1\right)\left(n+2\right)⋮\left(5.6\right)\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\left(đpcm\right)\)
Bài 1:
\(5n^3+15n^2+10n=5n\left(n^2+3n+2\right)=5n\left[\left(n^2+n\right)+\left(2n+2\right)\right]\)
\(=5n\left[n\left(n+1\right)+2\left(n+1\right)\right]=5n\left(n+1\right)\left(n+2\right)\)
Vì \(n\), \(n+1\)là 2 số nguyên liên tiếp
\(\Rightarrow n\left(n+1\right)⋮2\)\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮2\)(1)
Vì \(n\), \(n+1\), \(n+2\)là 3 số nguyên liên tiếp
\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\)(2)
Vì \(\left(2;3\right)=1\)(3)
Từ (1), (2) và (3) \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\)
\(\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\)
\(\Rightarrow5n^3+15n^2+10n⋮30\)( đpcm )
Bài 2:
Gọi 4 số nguyên dương liên tiếp là \(a\), \(a+1\), \(a+2\), \(a+3\)( \(a\inℕ^∗\))
Theo bài, ta có: \(a\left(a+1\right)\left(a+2\right)\left(a+3\right)=120\)
\(\Leftrightarrow a\left(a+3\right)\left(a+1\right)\left(a+2\right)=120\)
\(\Leftrightarrow\left(a^2+3a\right)\left(a^2+3a+2\right)=120\)
Đặt \(a^2+3a+1=t\)
\(\Rightarrow\left(t-1\right)\left(t+1\right)=120\)\(\Leftrightarrow t^2-1-120=0\)
\(\Leftrightarrow t^2-121=0\)\(\Leftrightarrow\left(t-11\right)\left(t+11\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t-11=0\\t+11=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=11\\t=-11\end{cases}}\)
+) TH1: Nếu \(t=-11\)\(\Rightarrow a^2+3a+1=-11\)
\(\Leftrightarrow a^2+3a+12=0\)( không có nghiệm nguyên )
+) TH2: Nếu \(t=11\)\(\Rightarrow a^2+3a+1=11\)
\(\Leftrightarrow a^2+3a-10=0\)\(\Leftrightarrow\left(a-2\right)\left(a+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-2=0\\a+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=2\\a=-5\end{cases}}\)
Vì \(a\inℕ^∗\)\(\Rightarrow a=2\)thỏa mãn đề bài
Vậy 4 số nguyên dương cần tìm là 2, 3, 4, 5
c/m rằng với mọi n thì 5n+8 và 8n+13 là 2 số nguyên tố cùng nhau
Gọi d là ƯCLN(5n+8, 8n + 13) ( \(d\inℕ^∗\) )
\(\Rightarrow5n+8⋮d;8n+13⋮d\)
\(\Rightarrow8\left(5n+8\right)⋮d;5\left(8n+13\right)⋮d\)
\(\Rightarrow40n+64⋮d;40n+65⋮d\)
\(\Rightarrow\left(40n+65\right)-\left(40n+64\right)⋮d\)
\(\Rightarrow1⋮d\)
Mà \(d\inℕ^∗\Rightarrow d=1\)
\(\RightarrowƯCLN\)\(\left(5n+8,8n+13\right)=1\)
\(\Rightarrow\) 5n + 8 và 8n + 13 nguyên tố cùng nhau \(\left(đpcm\right)\)