Ai giúp em bài này với ạ, em đang cần gấp
Tìm gtln hoặc gtnn
\(E=\sqrt{x}+2\sqrt{1-x}\)
Mọi người giúp em giải nhanh bài này với ạ, em đang cần gấp ạ. Em cảm ơn nhiều.
a) A= \(\left(\dfrac{x+14\sqrt{x}-5}{x-25}+\dfrac{\sqrt{x}}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\)Với x lớn hơn hoặc bằng 0, x khác 25
\(a,A=\left(\dfrac{x+14\sqrt{x}-5}{x-25}+\dfrac{\sqrt{x}}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\)
\(\Rightarrow A=\left(\dfrac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)
\(\Rightarrow A=\left(\dfrac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{x-5\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)
\(\Rightarrow A=\dfrac{x+14\sqrt{x}-5+x-5\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)
\(\Rightarrow A=\dfrac{2x+9\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)
\(\Rightarrow A=\dfrac{2x+10\sqrt{x}-\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)
\(\Rightarrow A=\dfrac{2\sqrt{x}\left(\sqrt{x}+5\right)-\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)
\(\Rightarrow A=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)
\(\Rightarrow A=\dfrac{2\sqrt{x}-1}{\sqrt{x}+2}\)
Mọi người giúp em với em đang cần gấp
tìm GTLN :
B = \(\dfrac{1}{\left|x-2\right|+3}\)
Hỗ trợ em bài này ạ. Tìm GTLN và GTNN của biểu thức P=\(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
Ta có: \(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left[\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]}\)
Lại có: \(4\sqrt{x}\ge0\) với mọi x
\(3\left[\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]>0\) với mọi x
\(\Rightarrow\) \(\dfrac{4\sqrt{x}}{3\left[\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]}\ge0\) với mọi x
Dấu "=" xảy ra \(\Leftrightarrow\) x = 0
Vậy ...
Chúc bn học tốt! (Mk ms nghĩ ra được GTNN thôi thông cảm!)
Còn tìm GTLN:
Ta có: \(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left[\left(\sqrt{x}-1\right)^2+\sqrt{x}\right]}\le\dfrac{4\sqrt{x}}{3\sqrt{x}}=\dfrac{4}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow\) \(\sqrt{x}-1=0\) \(\Leftrightarrow\) x = 1
Vậy ...
Chúc bn học tốt!
Tìm GTNN của biểu thức Q= \(\sqrt{x-1}-12\)
GIÚP EM VỚI Ạ EM ĐANG CẦN GẤP Ạ
đk : x>= 1
Q = \(\sqrt{x-1}-12\)
với \(x\ge1\Leftrightarrow x-1\ge0\Leftrightarrow\sqrt{x-1}\ge0\Leftrightarrow\sqrt{x-1}-12\ge12\)
Dấu ''='' xảy ra khi x = 1
Cho biểu thức:
f(x) = \(\sqrt{3-x}+\sqrt{2+x}\)
a) Tìm các giá trị của x để biểu thức f(x) xác định.
b) Tìm GTLN và GTNN của biểu thức f(x)
Mọi người ơi giải giúp mình bài này với ạ. Làm chi tiết 1 chút giúp mình nha.
Cho biểu thức:
f(x) = \(\sqrt{3-x}+\sqrt{2+x}\)
a) Tìm các giá trị của x để biểu thức f(x) xác định.
b) Tìm GTLN và GTNN của biểu thức f(x)
Mọi người ơi giải giúp mình bài này với ạ. Làm chi tiết 1 chút giúp mình nha.
A C giúp em bài này với ạ. Em cảm ơn
Cho x > 1
Tìm GTNN của
B = \(\frac{\sqrt{x}}{2}+\frac{2}{\sqrt{x}-1}\)
Ta có \(B=\frac{\sqrt{x}}{2}+\frac{2}{\sqrt{x}-1}=\frac{\sqrt{x}-1}{2}+\frac{2}{\sqrt{x}-1}+\frac{1}{2}\)
Áp dụng bất đẳng thức Cosi được \(\frac{\sqrt{x}-1}{2}+\frac{2}{\sqrt{x}-1}\ge2\Rightarrow B\ge2+\frac{1}{2}=\frac{5}{2}\)
Dấu đẳng thức xảy ra <=> \(\sqrt{x}-1=2\Leftrightarrow x=9\)
Vậy Min B = \(\frac{5}{2}\Leftrightarrow x=9\)
ai giúp em bài này với ạ
\(\sqrt{x^2+3x}+\sqrt{x+3}=x+\sqrt{x}+2\)
ĐKXĐ \(x\ge0\)
Pt
<=> \(\sqrt{x+3}\left(\sqrt{x}+1\right)=x+\sqrt{x}+2\)
Đặt \(\sqrt{x+3}=a,\sqrt{x}+1=b\left(a\ge0,b\ge1\right)\)
=> \(a^2+b^2=2x+2\sqrt{x}+4\)
Khi đó PT
<=> \(ab=\frac{a^2+b^2}{2}\)=> \(a=b\)
= >\(\sqrt{x+3}=\sqrt{x}+1\)
<=> \(2\sqrt{x}=2\)=>\(x=1\)(tm ĐKXĐ)
Vậy x=1
a) \(\dfrac{1}{2}\) x - 2 = 3 b) \(\dfrac{1}{4}\) \(x^2\) - \(\sqrt{36}\) = 10
Mong cao nhân nào giúp em hai câu này với ạ hiện tại em đang cần gấp lắm ạ
\(a,\dfrac{1}{2}x=3+2\)
\(\dfrac{1}{2}x=5\)
\(x=5\div\dfrac{1}{2}\)
\(x=10\)
\(b,\dfrac{1}{4}x^2-\sqrt{36}=10\)
\(\dfrac{1}{4}x^2-6=10\)
\(\dfrac{1}{4}x^2=10+6\)
\(\dfrac{1}{4}x^2=16\)
\(x^2=16\div\dfrac{1}{4}\)
\(x^2=64\)
\(x^2=\left(8\right)^2\)
\(\Rightarrow x=8\)