Tìm GTNN của hàm số: \(y=\frac{2x+1}{x^2+2}\)
Tìm GTNN của hàm: \(y=\frac{2x+1}{x^2+2}\)
Tìm GTNN của hàm số \(Y=\dfrac{x^2+2x+33}{4x-4}\) với x>1
\(y=\dfrac{x+3}{4}+\dfrac{9}{x-1}=\dfrac{x-1}{4}+\dfrac{9}{x-1}+1\)
\(y\ge2\sqrt{\dfrac{9\left(x-1\right)}{4\left(x-1\right)}}+1=4\)
\(y_{min}=4\) khi \(x=7\)
Tìm GTNN của hàm số y=\(\sqrt[3]{x^4+2x^2+1}\) - \(\sqrt[3]{x^2+1}+1\)
help me
Đặt \(\sqrt[3]{x^2+1}=t\left(t\ge1\right)\)
\(y=f\left(t\right)=t^2-t+1\)
\(minf\left(t\right)=f\left(1\right)=1\)
\(minf\left(t\right)=1\Leftrightarrow t=1\Leftrightarrow\sqrt[3]{x^2+1}=1\Leftrightarrow x=0\)
Tìm GTLN-GTNN của hàm số y= \(^{x^4}\)-\(2x^2\) với x thuộc [-2;1]
help me
Đạo hàm đi bạn :D Cho nhanh
\(y=f\left(x\right)=x^4-2x^2\)
\(\Rightarrow f'\left(x\right)=4x^3-4x\)
\(f'\left(x\right)=0\Leftrightarrow4x^3-4x=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=0\end{matrix}\right.\)
\(f\left(1\right)=-1;f\left(-2\right)=8;f\left(-1\right)=-1;f\left(0\right)=0\)
\(\Rightarrow y_{min}=-1;"="\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
\(y_{max}=8;"="\Leftrightarrow x=-2\)
Đặt \(x^2=t\left(0\le t\le4\right)\)
\(y=f\left(t\right)=t^2-2t\)
\(minf\left(t\right)=min\left\{f\left(0\right);f\left(4\right);f\left(1\right)\right\}=f\left(1\right)=-1\)
\(maxf\left(t\right)=max\left\{f\left(0\right);f\left(4\right);f\left(1\right)\right\}=f\left(4\right)=8\)
\(min=-1\Leftrightarrow x=\pm1\)
\(max=8\Leftrightarrow x=-2\)
Tìm GTNN của hàm số:
y = \(\frac{2}{1-x}+\frac{1}{x}\) với (0<x<1)
Ta có :
\(y=\frac{2}{1-x}+\frac{1}{x}\)
\(\Rightarrow y=\frac{2\left(1-x\right)+2x}{1-x}+\frac{1-x+x}{x}\)
\(\Rightarrow y=2+\frac{2x}{1-x}+\frac{1-x}{x}+1\)
\(\Rightarrow y=\frac{2x}{1-x}+\frac{1-x}{x}+3\)
Vì \(0< x< 1\Rightarrow\hept{\begin{cases}\frac{2x}{1-x}>0\\\frac{1}{x}>0\end{cases}}\)
Áp dụng BĐT Cô si cho 2 số dương , ta có :
\(\Rightarrow y=\frac{2x}{1-x}+\frac{1-x}{x}+3\ge2\sqrt{\frac{2x}{1-x}.\frac{1-x}{x}}+3=2\sqrt{2}+3\)
Dấu "=" xảy ra khi \(\frac{2x}{1-x}=\frac{1-x}{x}\Leftrightarrow\left(1-x\right)^2=2x^2\Leftrightarrow x^2+2x-1=0\Leftrightarrow\left(x+1\right)^2=2\Rightarrow x=\sqrt{2}-1\)
( vì\(0< x< 1\) )
Vậy \(Min_y=2\sqrt{2}+3\) khi \(x=\sqrt{2}-1\)
\(y=\frac{2}{1-x}+\frac{1}{x}\ge\frac{\left(\sqrt{2}+1\right)^2}{1-x+x}=3+2\sqrt{2}\)
Dấu = xảy ra khi
\(\frac{\sqrt{2}}{1-x}=\frac{1}{x}\)
\(\Leftrightarrow x=\frac{1}{1+\sqrt{2}}=\sqrt{2}-1\)
tìm GTLN và GTNN của hàm số y =-2x^2 khi x tăng từ -3 đến 2
Tính đạo hàm của các hàm số sau:
a) \(y = \frac{{2x - 1}}{{x + 2}};\)
b) \(y = \frac{{2x}}{{{x^2} + 1}}.\)
tham khảo:
a)\(y'=\dfrac{\left(2\right)\left(x+2\right)-\left(2x-1\right)\left(1\right)}{\left(x+2\right)^2}\)
\(y'=\dfrac{5}{\left(x+2\right)^2}\)
b)\(y'=\dfrac{\left(2\right)\left(x^2+1\right)-\left(2x\right)\left(2x\right)}{\left(x^2+1\right)^2}\)
\(y'=\dfrac{2\left(1-x^2\right)}{\left(x^2+1\right)^2}\)
Tìm đạo hàm cấp hai của mỗi hàm số sau:
a) \(y = \frac{1}{{2x + 3}}\)
b) \(y = {\log _3}x\)
c) \(y = {2^x}\)
\(a,y'=\left(\dfrac{1}{2x+3}\right)'=-\dfrac{2}{\left(2x+3\right)^2}\\ \Rightarrow y''=\dfrac{2\cdot\left[\left(2x+3\right)^2\right]'}{\left(2x+3\right)^4}=\dfrac{8}{\left(2x+3\right)^3}\\ b,y'=\left(log_3x\right)'=\dfrac{1}{xln3}\\ \Rightarrow y''=-\dfrac{1}{x^2ln3}\\ c,y'=\left(2^x\right)'=2^x\cdot ln2\\ \Rightarrow y''=2^x\cdot\left(ln2\right)^2\)
Cho x,y là 2 số dương thỏa mãn xy=2
tìm GTNN của \(\frac{1}{x}+\frac{2}{y}+\frac{3}{2x+3y}\)