Chứng tỏ đa thức 2x2 – x + 1 không có nghiệm trên tập hợp R
Chứng tỏ rằng đa thức f(x)=x2-x+1 không có nghiệm trên tập hợp số thực R.
\(f\left(x\right)=x^2-x+1=x^2-\frac{1}{2}x-\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=x\left(x-\frac{1}{2}\right)-\frac{1}{2}\left(x-\frac{1}{2}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\) với mọi x \(\in\) R
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}>0\) với mọi x \(\in\) R
Vậy \(f\left(x\right)=x^2-x+1\) vô nghiệm trên tập hợp số thực R
Chứng tỏ đa thức:
f(x)=x^2-x+1 Không có nghiệm trên tập hợp số thực
Chứng tỏ đa thức M(x)= 2x2+3 không có nghiệm
Ta có 2x2 ≥ 0 với mọi x
➩ 2x2 + 3 ≥ 3
Hay M(x) ≥ 3
Vậy M(x) không có nghiệm
Ta có 2x2≥0 với ∀ x
3>0
=>2x2+3≥3 với ∀ x
=>2x2+3>0 với ∀ x
=>Đa thức 2x2+3 vô nghiệm
a. Tìm nghiệm của đa thức A(x)= 6-2x
b. Cho đa thức P(x)= x4+2x2+1
1. Tính P(1),P= \(\left(\dfrac{-1}{2}\right)\)
2. Chứng tỏ rằng đa thức P(x) không có nghiệm
a) A(x) = 0 ⇔ 6 - 2x = 0 ⇔ x = 3
Nghiệm của đa thức là x = 3
b)1. P(1) = \(1^4+2.1^2+1\) = 4
P(\(-\dfrac{1}{2}\)) = \(\left(-\dfrac{1}{2}\right)^4+2\left(-\dfrac{1}{2}\right)^2+1\) = \(\dfrac{25}{16}\)
Ta có: P(x) = \(\left(x^2+1\right)^2\)
Vì \(\left(x^2+1\right)^2\) ≥ 0
Nên P(x) = 0 khi \(x^2+1=0\) ⇔ \(x^2=-1\) (vô lý)
Vậy P(x) không có nghiệm
a) Đặt A(x)=0
\(\Leftrightarrow6-2x=0\)
\(\Leftrightarrow2x=6\)
hay x=3
Vậy: x=3 là nghiệm của đa thức A(x)
b)
1: Thay x=1 vào đa thức P(x), ta được:
\(P\left(1\right)=1^4+2\cdot1^2+1=1+2+1=4\)
Thay \(x=-\dfrac{1}{2}\) vào đa thức P(x), ta được:
\(P\left(-\dfrac{1}{2}\right)=\left(-\dfrac{1}{2}\right)^4+2\cdot\left(-\dfrac{1}{2}\right)^2+1=\dfrac{1}{16}+\dfrac{1}{2}+1=\dfrac{25}{16}\)
Chứng tỏ rằng đa thức M = 2x2 + 1 không có nghiệm.
`M = 2x^2+1`
Ta có: \(x^2\ge0\)
`->` \(2x^2\ge0\)
`->`\(2x^2+1\ge1>0\)
`->` Đa thức `M \ne 0` \(\forall\) \(x\)
`->` Đa thức M không có nghiệm (vô nghiệm).
cho đa thức p(x)= 4x3+3x4-2x2-x3+4x2-3x3+2
Hãy chứng tỏ rằng đa thức trên không có nghiệm
nhanh lên nhé
P(x)=3x^4+2x^2+2
Ta có 3x^4 >=0 , 2x^2 >=0 =. P(x)>0
Vậy P(x) vô nghiêm
Học tốt
Ta có: P(x) = 4x3 + 3x4 - 2x2 - x3 + 4x2 - 3x3 + 2
P(x) = (4x3 - x3 - 3x3) + 3x4 - (2x2 - 4x2) + 2
P(x) = 3x4 + 2x2 + 2 \(\ge\)2 > 0
(vì 3x4 \(\ge\)0; 2x2 \(\ge\)0; 2 > 0)
=> Đa thức P(x) ko có nghiệm
Chứng tỏ đa thức:f(x)=x2-x+1 không có nghiệm trên tập hợp số thực
Chứng tỏ đa thức:f(x)=x2-x 1 không có nghiệm trên tập hợp số thực
Cho hai đa thức: f(x) = 9 -3x5 + 7x - 2x3 +3x5 + x2 – 3x -7x4
g(x) = x4 + 1 + 2x2 +7x4 + 2x3 - 3x- 2x2 - x
a) Thu gọn và sắp xếp các đa thức trên theo luỹ thừa giảm của biến.
b) Tính h(x) = f(x) + g(x)
c) Chứng tỏ đa thức h(x) không có nghiệm
a, \(f\left(x\right)=9-3x^5+7x-2x^3+3x^5+x^2-3x-7x^4=-7x^4-2x^3+x^2+4x+9\)
\(g\left(x\right)=x^4+1+2x^2+7x^4+2x^3-3x-2x^2-x=8x^4+2x^3-4x+1\)
b, Ta có : \(h\left(x\right)=f\left(x\right)+g\left(x\right)=-7x^4-2x^3+x^2+4x+9+8x^4+2x^3-4x+1\)
\(=x^4+x^2+10\)
c, Ta có : \(x^4\ge0\forall x;x^2\ge0\forall x;10>0\Rightarrow x^4+x^2+10>0\)
Vậy phương trình ko có nghiệm ( đpcm )
Kết luận cuối là Vậy đa thức h(x) ko có nghiệm ( đpcm ) nhé