Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phú Nguyễn
Xem chi tiết
Đặng công quý
12 tháng 11 2017 lúc 21:32

suy ra a+b +c -2013 = 0 và 2013(ab+bc+ca) -abc =0

suy ra: a+ b +c =2013 và 2013 .(ab +bc +ca )= abc

suy ra: c =2013- (a+ b ) và 1/a + 1/b +1/c = 1/2013 (2)

thay c =2013- (a+ b ) vào ( 2), biến đổi ta tìm đc: ab = 2013(a+b) -20132. Tương tự ta có: bc = 2013(c+b) -20132.

và ac = 2013(c+a) -20132. . Cộng lại ta có: ab +bc + ca = 2013. 2. (a+b+c) -3.20132=-20132

suy ra: abc = -20133. Từ đó ta tính được hai trong ba số a,b,c bằng 2013 và số còn lại = -2013

P = 1/20132013

thanhphuong nguyen
Xem chi tiết
thanhphuong nguyen
16 tháng 10 2014 lúc 10:52

giúp mình với mình cần gấp

 

Nguyễn Hoàng Anh Thư
Xem chi tiết
Nguyễn Linh Chi
17 tháng 3 2020 lúc 20:34

Câu hỏi của Hà Văn Minh Hiếu - Toán lớp 8 - Học toán với OnlineMath

Khách vãng lai đã xóa
Trí Tiên亗
11 tháng 9 2020 lúc 22:42

Ta có : \(a+b+c=6\)

\(\Rightarrow\left(a+b+c\right)^2=36\)

\(\Rightarrow a^2+b^2+c^2+2.\left(ab+bc+ca\right)=36\)

\(\Rightarrow a^2+b^2+c^2=36-2.12=12\)

Do đó : \(a^2+b^2+c^2=ab+bc+ca\left(=12\right)\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Khi đó biểu thức :

\(\left(a-b\right)^{2012}+\left(b-c\right)^{2013}+\left(c-a\right)^{2014}=0+0+0=0\)

Khách vãng lai đã xóa
Hà Văn Minh Hiếu
Xem chi tiết
Nguyễn Linh Chi
17 tháng 3 2020 lúc 20:34

Ta có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)

\(=2a^2+2b^2+2c^2-2ab-2bc-2ac\)

\(=2\left(a^2+b^2+c^2+2ab+2ac+2bc\right)-6ab-6bc-6ac\)

\(=2\left(a+b+c\right)^2-6\left(ab+bc+ac\right)\)

\(=2.6^2-6.12=0\)

Mà : \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(a-c\right)^2\ge0\)

nên \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Do đó: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

<=> \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow a=b=c\)

Vậy \(\left(a-b\right)^{2012}+\left(b-c\right)^{2013}+\left(c-a\right)^{2014}=0\)

Khách vãng lai đã xóa
Bùi Đức Thắng
Xem chi tiết
trang
Xem chi tiết
trang
27 tháng 1 2017 lúc 15:25

cái chỗ a+c+1 la "ac+c+1" nha, mình viết nhầm

Phan Thế Anh
27 tháng 1 2017 lúc 15:33

ta có: \(\frac{2013a^2bc}{ab+2013a+2013}\)\(\frac{2013.ab.ac}{ab+ab.ac+abc}\)\(\frac{2013.ab.ac}{ab.\left(ac+c+1\right)}\)\(\frac{2013ac}{ac+c+1}\)

\(\frac{ab^2c}{bc+b+2013}\)\(\frac{abc.b}{bc+b+abc}\)\(\frac{2013b}{b\left(ac+c+1\right)}\)\(\frac{2013}{ac+c+1}\)

\(\frac{abc^2}{ac+c+1}\)\(\frac{abc.c}{ac+c+1}\)\(\frac{2013c}{ac+c+1}\)

Cộng cả 3 phân thức cùng mẫu thức ta có phân thức cuối cùng là:

P=\(\frac{2013.\left(ac+c+1\right)}{ac+c+1}\)=2013

Tran VAN VY
Xem chi tiết
Ken Tom Trần
29 tháng 7 2016 lúc 9:48

cho 2014=2013+1 thay vào ta có:\(B=x^{2013}-\left(2013+1\right)x^{2012}+\left(2013+1\right)x^{2011}-...-\left(2013+1\right)x^2+\left(2013+1\right)x-1\)

\(=x^{2013}-\left(x+1\right)x^{2012}+\left(x+1\right)x^{2011}-...-\left(x+1\right)x^2+\left(x+1\right)x-1\)

\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-...-x^3-x^2+x^2+x-1\)

\(=x-1=2013-1=2012\)

Hà Như Thuỷ
29 tháng 3 2016 lúc 17:57

nhiều quáhuhu

Ngân Hoàng Xuân
29 tháng 3 2016 lúc 18:22

lớp 7 hả

Đoàn Thị Hồng Huyền
Xem chi tiết
bao than đen
20 tháng 3 2018 lúc 20:30

\(P=\frac{a^3b^2c^2}{ab+a^2bc+abc}+\frac{ab^2c}{bc+b+abc}+\frac{abc^2}{ac+c+1}\)

\(=\frac{ }{ab\left(1+ac+c\right)}+\frac{ }{b\left(c+1+ac\right)}+\frac{ }{ac+c+1}\)

hoàng thùy
Xem chi tiết