So sánh:
230 và 320
415 và 810
351 và 534
109 và 810
So sánh: 2515 và 810 . 330
2515 = (52)15 = 530
810.330 = (23)10.330 = 230.330 = 630
Vì 530 < 630 (0<5<6)
=> 2515 < 810.330
\(25^{15}=\left(5^2\right)^{15}=5^{30}\)
\(8^{10}\cdot3^{30}=\left(2^3\right)^{10}\cdot3^{30}=2^{30}\cdot3^{30}=\left(2\cdot3\right)^{30}=6^{30}\)
Vì \(5< 6\) nên \(5^{30}< 6^{30}\)
Vậy \(25^{15}< 8^{10}\cdot3^{30}\)
so sánh: -230 và -320
so sánh 69/-230 và -39/143
69/-230=-3/10
-39/143=-3/11
-3/10 <-3/11
vay..............69/-230<-39/143
a) So sánh: 2515 và 810 . 3 30
b) Tìm giá trị nhỏ nhất của biểu thức A= │209 - x │ + 2078
b) Ta có: \(\left|209-x\right|\ge0\forall x\)
\(\Leftrightarrow\left|209-x\right|+2078\ge2078\forall x\)
Dấu '=' xảy ra khi 209-x=0
hay x=209
Vậy: Giá trị nhỏ nhất của biểu thức A=|209-x|+2078 là 2078 khi x=209
Câu 11. Số tự nhiên x thỏa mãn là
A. 1 B. 0 C. 0;1 D. Một kết quả khác
Câu 12. Kết quả so sánh 320 và 230 là
A.320 > 230. B.320 > 230. C.320 = 230. D.320 ≤ 230.
So sánh các phân số:
a) 51/85 và 58/145
b) 161/207 và 91/130
c) 69/-230 và -39/143
a,Tính tổng:S=1+52+54+...+5200
b,So sánh 230+330+430 và 3.2410
a,Tính tổng:S=1+52+54+...+5200
=>52S=52+54+56+...+5202
=>25S-S=24S=5202-1
=>S=\(\frac{5^{202}-1}{24}\)
b,So sánh 230+330+430 và 3.2410
3.24^10=3^11.4^15
4^30=4^15.4^15
hiển nhiên 4^15>3^11
=>3.24^10<<4^30<<<2^30+3^20+4^30
Ta có: 230+330+430>230+230+430=231+230.230
=231(1+229) (1)
Lại có:3.24^10=3^11.2^30 (2)
So sánh (1)và (2): Vì 3^11<4^11=2^22<2^29
và 2^30<2^31
=> 3^11.2^30 <(1+2^29)2^31<2^30+3^30+4^30
So sánh : 230+330+430 và 3.3210
Làm từng bước cảm ơn các bạn ! Tick cho 3 bạn có câu trả lời nhanh nhất!
Ta có: 430 = 230 . 230 = (23)10 . (22)15 > 810 . 315 > (810 . 310) . 35 > 2410 . 3
Vậy 230 + 330 + 430 > 3.2410
Hãy tính và so sánh giá trị của từng cặp biểu thức sau đây :
a) \(A=\cos^230^0-\sin^230^0\) và \(B=\cos60^0+\sin45^0\)
b) \(C=\dfrac{2\tan30^0}{1-\tan^230^0}\) và \(D=\left(-\tan135^0\right)\tan60^0\)
a)
\(A=cos^230^o-sin^230^o=\left(\dfrac{\sqrt{3}}{2}\right)^2-\left(\dfrac{1}{2}\right)^2=\dfrac{1}{2}\);
\(B=cos60^o+sin45^o=\dfrac{1}{2}+\dfrac{\sqrt{2}}{2}\).
Vì vậy \(A< B\).
b)
\(C=\dfrac{2tan30^o}{1-tan^230^o}=\dfrac{2\dfrac{\sqrt{3}}{2}}{1-\left(\dfrac{\sqrt{3}}{2}\right)^2}=\sqrt{3}\).
\(D=\left(-tan135^o\right)tan60^o=-\left(-1\right).\sqrt{3}=\sqrt{3}\).
Vậy \(C=D\).
1. Tìm x
A, 3^x+2 +3^x = 810
B, 2^x3 - 2^ x
C, 5^x+1 +5^x -2 =126
2 . So sánh
A, 27^11 và 81^8
B, 5^36 và 11^24
C, 625^5 và 125^7
Bài 1:
a: \(\Leftrightarrow3^x\cdot10=810\)
\(\Leftrightarrow3^x=81\)
hay x=4
c: \(\Leftrightarrow5^x\cdot5+5^x\cdot\dfrac{1}{25}=126\)
\(\Leftrightarrow5^x\cdot\dfrac{126}{25}=126\)
\(\Leftrightarrow5^x=25\)
hay x=2
Bài 2:
a: \(27^{11}=3^{33}\)
\(81^8=3^{32}\)
mà 33>32
nên \(27^{11}>81^8\)
c: \(625^5=\left(5^4\right)^5=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{21}\)
mà 20<21
nên \(625^5< 125^7\)