Cho hbhành ABCD, O là giao điểm của 2 đ`g chéo. Qua O, vẽ đ`g thẳng cắt 2 cạnh AB,CD ở E, F. Qua O vẽ đ`g thẳng cắt 2 cạnh AD,BC ở G, H. CMR: EFGH là hbhành
Cho hình bhành ABCD, O là giao điểm của 2 đ`g chéo. Qua O đ`g thẳng cắt 2 cạnh AB,CD ở E, F. Qua O vẽ đ`g thẳng cắt 2 cạnh AD, BC ở G, H. C/m rằng EFGH là hình bhành.
Giúp mk vs, ko cần hình vẽ đâu
Sử dụng kiến thức tam giác đồng dạng và t/c đường chéo hbh để c/m
Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Qua O vẽ đường thẳng cắt hai cạnh AB, CD ở E, F. Qua O vẽ đường thẳng cắt hai cạnh AD, BC ở G, H. Chứng minh rằng EGFH là hình bình hành.
* Xét ∆ OAE và ∆ OCF, ta có:
OA = OC (tính chất hình bình hành)
∠ (AOE)= ∠ (COF)(đối đỉnh)
∠ (OAE)= ∠ (OCF)(so le trong)
Do đó: ∆ OAE = ∆ OCF (g.c.g)
⇒ OE = OF (l)
* Xét ∆ OAG và ∆ OCH, ta có:
OA = OC (tính chất hình bình hành)
∠ (AOG) = ∠ (COH)(dối đỉnh)
∠ (OAG) = ∠ (OCH)(so le trong).
Do đó: ∆ OAG = ∆ OCH (g.c.g)
⇒ OG = OH (2)
Từ (1) và (2) suy ra tứ giác EGFH là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường).
cho hình bình hành ABCD , O là giao điểm của hai đường chéo. Qua O vẽ đường thẳng cắt hai canh AB , CD ở E ,F . Qua O vẽ đường thẳng cắt hai cạnh AD , BC ở G,H . Chứng minh rằng EGFH là hình bình hành
giải: trong \(\Delta ADB\) có:
E là trung điểm của AB (gt)
H là trung điểm của AD (gt)
=> EH là đường trung bình của \(\Delta ADB\) (đ/n)
=> EH // BD và EH = \(\frac{1}{2}\) BD (định lý) (1)
trong \(\Delta CBD\) có:
F là trung điểm của BC (gt)
G là trung điểm của CD (gt)
=> FG là đường trung bình của \(\Delta CBD\) (đ/n)
=> FG // BD và FG = \(\frac{1}{2}BD\) (định lý) (2)
từ (1) và (2) => tứ giác EFGH là hình bình hành
ok mk nhé!!! 564756582352353645756756568768768797898898707803463464545756756
Cho hình bài hành ABCD , O là giao điểm hai đường chéo. Qua O vẽ đường thẳng cắt hai cạnh AB và CD tại E và F . Qua O vẽ hai đường thẳng cắt hai cạnh AD và BC ở G và H . Chứng minh rằng EGFH là hình bình hành
Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Qua O, vẽ đường thẳng cắt hai cạnh AB, AC ở E và F. Qua O vẽ đường thẳng cắt hai cạnh AD, BC ở G và H.
Chứng minh rằng EGFH là hình bình hành ?
Cho tứ giác ABCD,O là giao điểm của 2 đường chéo AC và BD.Đường thằng song song với BC qua O,cắt AB ở E và đường thẳng song song với CD qua O,cắt AD ở F
a,CMR: Đường thẳng EFsong song với đg chéo BD
b,Từ O vẽ các dduong thẳng song song với AB và AD,cắt BC và DC tại G và H.CMRL CG.DH=BG.CH
Cho hình thoi ABCD ;O là giao điểm của 2 đường chéo. Các tia phân giác của 4 góc đỉnh O cắt các cạnh AB,BC,CD,DA theo thứ tự ở E,F,G,H.
CMR: EFGH là hình vuông
Bài 1: Cho tứ giác ABCD, E là trung điểm cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F. Qua F kẻ đường thẳng song song với BD cắt CD ở G. Qua G kẻ đường thẳng song song với AC cắt AD ở H.
a) Chứng minh tứ giác EFGH là hình bình hành.
b) Tứ giác ABCD cần thêm điều kiện gì để tứ giác EFGH là hình chữ nhật.
Các bạn giúp mình nhé, mình đang cần gấp. Cảm ơn các bạn nhiều.
Xét tg ABC có
EF//AC (gt) (1)
EA=EB (gt)
=> FB=FC (Trong tg đường thẳng đi qua trung điểm của 1 cạnh và song song với 1 cạnh thì đi qua trung điểm cạnh còn lại)
Ta có
EA=EB (gt); FB=FC (cmt) => EF là đường trung bình của tg ABC
\(\Rightarrow EF=\dfrac{1}{2}AC\) (2)
Xét tg BCD chứng minh tương tự ta cũng có GC=GD
Xét tg ADC có
GF//AC (gt) (3)
GC=GD (cmt)
=> HA=HD (Trong tg đường thẳng đi qua trung điểm của 1 cạnh và song song với 1 cạnh thì đi qua trung điểm cạnh còn lại)
Ta có
GC=GD (cmt); HA=HD (cmt) => GH là đường trung bình của tg ADC
\(\Rightarrow GH=\dfrac{1}{2}AC\) (4)
Từ (1) và (3) => EF//GH (cùng // với AC)
Từ (2) và (4) \(\Rightarrow EF=GH=\dfrac{1}{2}AC\)
=> EFGH là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)
b/
Gọi O là giao của AC và BD
Ta có
FG//BD (gt); GH//AC (gt) \(\Rightarrow\widehat{HGF}=\widehat{DOC}\) (Góc có cạnh tương ứng vuông góc)
Để EFGH là Hình chữ nhật \(\Rightarrow\widehat{HGF}=90^o\)
\(\Rightarrow\widehat{HGF}=\widehat{DOC}=90^o\Rightarrow AC\perp BD\)
Để EFGH là hình chữ nhật => ABCD phải có 2 đường chéo vuông góc với nhau
Cho tg ABCD, O là giao điểm 2 đường chéo. Đường thẳng song song với BC đi qua O cắt AB ở E, đường thẳng song song với CD qua O cắt AD ở F
a, C/m EF//BD
b,Từ O kẻ các đường thẳng song song với AB, AD cắt BC và DC theo thứ tự ở G và H. C/m CG.DH=BG.DH