x^4y^4+64
Phân tích thành nhân tử(Phương pháp thêm bớt hạng tử):
a)x^4+4y^4
b)x^4y^4+4
c)x^4y^4+64
d)x^5+x+1
a)
x4+4y4
=x4+4y4+4x2y2-4x2y2
=(x2+2y2)2-4x2y2
=(x2+2y2-2xy)(x2+2y2+2xy)
x/4=y/64 và x^4y^4=16 tìm x và y
Phân tích thành nhân tử(Phương pháp thêm bớt thêm bớt hạng tử):
a)x^4y^4+4
b)x^4y^4+64
c)x^5+x+1
x4y4 + 4
= x4y4 + 4x2y2 + 4 - 4x2y2
= (x2y2 + 2)2 - (2xy)2
= (x2y2 - 2xy + 2)(x2y2 + 2xy + 2)
x4y4 + 64
= x4y4 + 16x2y2 + 64 - 16x2y2
= (x2y2 + 8)2 - (4xy)2
= (x2y2 - 4xy + 8)(x2y2 + 4xy + 8)
x5 + x + 1
= x5 - x2 + x2 + x + 1
= x2(x3 - 1) + (x2 + x + 1)
= x2(x - 1)(x2 + x + 1) + (x2 + x + 1)
= (x2 + x + 1)[x2(x - 1) + 1]
Rút gọn biểu thức : a . A = 4 √25x/4 - 8/3 √9x/4 - 4/3x √9x³/64 ( với x ≥ 0 ) b. B = y/2 + 3/4 √1-4y+4y² - 3/2 ( với y ≤ 1/2 )
a: \(A=4\cdot\dfrac{5}{2}\sqrt{x}-\dfrac{8}{3}\cdot\dfrac{3}{2}\sqrt{x}-\dfrac{4}{3x}\cdot\dfrac{3x}{8}\cdot\sqrt{x}\)
\(=10\sqrt{x}-4\sqrt{x}-\dfrac{1}{2}\sqrt{x}\)
\(=\dfrac{11}{2}\sqrt{x}\)
b: \(B=\dfrac{y}{2}+\dfrac{3}{4}\cdot\left|2y-1\right|-\dfrac{3}{2}\)
\(=\dfrac{y}{2}+\dfrac{3}{4}\left(1-2y\right)-\dfrac{3}{2}\)
=1/2y+3/4-3/2y-3/2
=-y-3/4
Phân tích đa thức thành nhân tử bằng phương pháp thêm bớt 1 hạng tử
a. y^4+64
b. x^2+4
c. x^4+16
d.x^4y^4+4
e. 4x^4y^4+1
y^4+64
=(y^2)^2+16y^2+64-16y^2
=(y^2+8-4x)(x^2+8+4x)
x^2+4
=x^2+2x^2+4-2x^2
=(x+2)^2-2x^2
=(x^2+2-2x)(x^2+2+2x)
x^4+16
=(x^2)^2+4x^2+16-4x^2
=(x+4)^2-4x^2
=(x^2+4-4x)(x^2+4+4x)
x^4y^4+4
=x^4y^4+4x^4+2^2-4x^4
=(x^4y^4+2)^2-(2x^2)^2
=(x^4y^4+2+2x^2)(x^4y^4+2-2x^2)
4x^4y^4+1
=4x^4y^4+x^4+1-x^4
=(2x^4y^4+1)^2-(x^2)^2
=(2x^4y^4+1-x^2)(2x^4y^4+1+x^2)
Mình ko bt câu D đúng hay sai nữa. Mà lỡ sai bạn đừng giận mình nha!
Cho x+ y=12 và x khác 4.Tìm GTLN của biểu thức A= x^2 -4x+xy-4y/x^3-64
Phân tích đa thức thành nhân tử
1. \(x^4y^4+4\)
2. \(x^4y^4+64\)
3. \(x^4+3x^2+4\)
4. \(4x^4y^4+1\)
5. \(32x^4+1\)
6. \(x^4+4y^4\)
1.
x4y4+4=[(x2y2)2+2.x2y2.2+22]-4x2y2
=(x2y2+2)2-(2xy)2
bạn tính nốt đi, câu 2, 4, 6 tương tự
câu 4 khá dài bạn lấy số đấy chia cho (x+1) ra nháp rồi tính ngược lại sẽ ra
1: \(=x^4y^4+4+4x^2y^2-4x^2y^2\)
\(=\left(x^2y^2+2\right)^2-4x^2y^2\)
\(=\left(x^2y^2+2xy+2\right)\left(x^2y^2-2xy+2\right)\)
2: \(=x^4y^4+16x^2y^2+64-16x^2y^2\)
\(=\left(x^2y^2+8\right)^2-16x^2y^2\)
\(=\left(x^2y^2+8-4xy\right)\left(x^2y^2+8+4xy\right)\)
3: \(=x^4+4x^2+4-x^2\)
\(=\left(x^2+2\right)^2-x^2\)
\(=\left(x^2+x+2\right)\left(x^2-x+2\right)\)
4: \(=4x^4y^4+1+4x^2y^2-4x^2y^2\)
\(=\left(2x^2y^2+1\right)^2-\left(2xy\right)^2\)
\(=\left(2x^2y^2+1-2xy\right)\left(2x^2y^2+1+2xy\right)\)
6: \(=x^4+4y^4+4x^2y^2-4x^2y^2\)
\(=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2+2y^2+2xy\right)\left(x^2+2y^2-2xy\right)\)
a) x^4 + 16 b) x^4y^4 + 64 c) x^4y^4 + 4
d) 4x^4y^4 + 1 e) x^4 + 1 f) x^8 + x + 1
g) x^8 + x^7 + 1 h) x^8 + 3x^4 + 1 k) x^4 + 4y^4
giúp mik với mik cần cực kì gấp đội ơn mọi người
Phân tích đa thức thành nhân tử
x^4y^4+64
các bạn làm nhanh cho mình nhé
x4y4 + 64
= x4y4 + 16x2y2 + 64 - 16x2y2
= (x2y2 + 8)2 - (4xy)2
= (x2y2 - 4xy + 8)(x2y2 + 4xy + 8)