các bậc của đa thức 6x\(^4\)y+ 6x\(^2\)y\(^2\)+ 5x\(^8\)+ 1
1 thu gọn và Tìm bậc của các đa thức sau rồi Tính giá trị của đa thức tại x = -1,y=2 P=4x²y²-3xy³+5x²y²-5xy³--xy+x-1 Q=-4x²y²-xy+4xy³+2xy-6x³y-4x³y
Ta có:
\(P=4x^2y^2-3xy^3+5x^2y^2-5xy^3-xy+x-1\)
\(P=\left(4x^2y^2+5x^2y^2\right)-\left(3xy^3+5xy^3\right)-xy+x-1\)
\(P=9x^2y^2-8xy^3-xy+x-1\)
Bậc của đa thức P là: \(2+2=4\)
Thay x=-1 và y=2 vào P ta có:
\(P=9\cdot\left(-1\right)^2\cdot2^2-8\cdot-1\cdot2^3-\left(-1\right)\cdot2+\left(-1\right)-1=100\)
\(Q=-4x^2y^2-xy+4xy^3+2xy-6x^3y-4x^3y\)
\(Q=-4x^2y^2-\left(xy-2xy\right)+4xy^3-\left(6x^3y+4x^3y\right)\)
\(Q=-4x^2y^2+xy+4xy^3-10x^3y\)
Bậc của đa thức Q là: \(2+2=4\)
Thay x=-1 và y=2 vào Q ta có:
\(Q=-4\cdot\left(-1\right)^2\cdot2^2+\left(-1\right)\cdot2+4\cdot-1\cdot2^3-10\cdot\left(-1\right)^3\cdot2=-30\)
Cho hai đa thức: A=\(5x^3+y^3-3x^2y+4xy^2;B=4x^3-6x^2y+xy^2\)
a. Tìm đa thức C = A− B; D = A + B và tìm bậc của chúng.
b. Tính giá trị của D tại x = 0; y = −2.
c. Tính giá trị của C tại x = y = −1.
a: C=A-B
\(=5x^3+y^3-3x^2y+4xy^2-4x^3+6x^2y-xy^2\)
\(=x^3+3x^2y+3xy^2+y^3\)
D=A+B
\(=5x^3+y^3-3x^2y+4xy^2+4x^3-6x^2y+xy^2\)
\(=9x^3-9x^2y+5xy^2+y^3\)
bậc của C là 3
bậc của D là 3
b: Thay x=0 và y=-2 vào D, ta được:
\(D=9\cdot0^3-9\cdot0^2\left(-2\right)+5\cdot0\cdot\left(-2\right)^2+\left(-2\right)^3\)
\(=0-0+0-8=-8\)
c: Thay x=-1 và y=-1 vào C, ta được:
\(C=\left(-1\right)^3+3\cdot\left(-1\right)^2\cdot\left(-1\right)+3\cdot\left(-1\right)\cdot\left(-1\right)^2+\left(-1\right)^3\)
=-8
Tìm bậc của đa thức: A= 4x^2-5x^3+3x-2x^2-7+x
Tìm bậc của đa thức: B= 6x^2-5x^3+2x-4x^2-7+x
\(A=4x^2-5x^3+3x-2x^2-7+x\\ =2x^2-5x^3+4x-7\)
Vậy bậc của đa thức A là 3
\(B=6x^2-5x^3-2x-4x^2-7+x\\ =2x^2-5x^3-x-7\)
Vậc bậc của đa thức B là 3
Bài 4. Thu gọn các đa thức sau:
A=5x^2+3y+6x^2+7y
B=7x^3+6y+6x^3+5y+6^2
C=-8x^5+3y^4-x^5-10y^4
D=x^2+y^2-5x^2-6y^2
A=5x^2+6x^2+3y+7y=11x^2+10y
B=7x^3+6x^3+6y+5y+36=13x^3+11y+36
C=-8x^5-x^5+3y^4-10y^4=-9x^5-7y^4
C=x^2-5x^2+y^2-6y^2=-4x^2-5y^2
cho đa thức:
A= x^2 - 3xy - y^2 + 2x - 3y + 1
B = - 2x^2 + xy + 2y^3 - 3 - 5x + y
C = 7y^2 + 3x^2 - 4xy - 6x + 4y +5
tính A-B+C;A-B-C rồi xác định Bậc của đa thức đó
Cho đa thức :H=\(6X^3Y^4-2X^4Y^2+3X^2Y^2+5X^4Y^2-AX^3Y^4\) (A là hằng số).
a. Biết rằng bậc của đa thức bằng 6. Tìm a ?
b. Với giá trị của a vừa tìm được, chứng minh đa thức H luôn nhận giá trị dương với mọi
x khác 0; y KHÁC 0.
a: \(H=6x^3y^4-2x^4y^2+3x^2y^2+5x^4y^2-A\cdot x^3y^4\)
\(=x^3y^4\left(6-A\right)+x^4y^2\left(5-2\right)+3x^2y^2\)
\(=\left(6-A\right)\cdot x^3y^4+x^4y^2\cdot3+3x^2y^2\)
Để H có bậc là 6 thì 6-A=0
=>A=6
b: Khi A=6 thì \(H=\left(6-6\right)\cdot x^3y^4+3x^4y^2+3x^2y^2\)
\(=3x^4y^2+3x^2y^2\)
\(=3x^2y^2\left(x^2+1\right)\)
\(x^2+1>1>0\forall x\ne0\)
\(x^2>0\forall x\ne0\)
\(y^2>0\forall y\ne0\)
Do đó: \(x^2y^2\left(x^2+1\right)>0\forall x,y\ne0\)
=>\(H=3x^2y^2\left(x^2+1\right)>0\forall x,y\ne0\)
=>H luôn dương khi x,y khác 0
Sắp xếp các đa thức sau theo bậc lũy thừa tăng rồi tìm bậc của mỗi đa thức sau khi thu gọn và chỉ ra hệ số khác 0 của mỗi đa thức.
A(x)=4x mũ 3 - 2x mũ 2 +6x -5x mũ 3 +4x mũ 2 - 10x - 4.
R(x)= -x mũ 2 + 3x mũ 4 + 3x - 2x mũ 4 + 9x mũ 5 - 6x mũ 2 - 5.
Q(x)= 9 + 5x mũ 2 - 3x mũ 3 + 6x mũ 2 + 7x mũ 3 - 4x mũ 5 -6.
B(x)= 4x mũ 3 - 2x + 5x mũ 3 - 7x + 2 x mũ 2 + 10x - 2x mũ 3 + 8.
Giải giùm em với mọi người ơi!!
cho đa thức:
A= x^2 - 3xy - y^2 + 2x - 3y + 1
B = - 2x^2 + xy + 2y^3 - 3 - 5x + y
C = 7y^2 + 3x^2 - 4xy - 6x + 4y +5
tính A+B+C; A-B+C;A-B-C rồi xác định Bậc của đa thức đó
cho đa thức:
A= x^2 - 3xy - y^2 + 2x - 3y + 1
B = - 2x^2 + xy + 2y^3 - 3 - 5x + y
C = 7y^2 + 3x^2 - 4xy - 6x + 4y +5
tính A+B+C; A-B+C;A-B-C rồi xác định Bậc của đa thức đó