Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trần Phương Thảo
Xem chi tiết
Trần Việt Linh
9 tháng 10 2016 lúc 11:52

\(A=\frac{12}{\sqrt{7+2\sqrt{6}}}=\frac{12}{\sqrt{\left(\sqrt{6}+1\right)^2}}=\frac{12}{\sqrt{6}+1}=\frac{12\left(\sqrt{6}-1\right)}{5}\)

Huỳnh Trần Thảo Nguyên
Xem chi tiết
đàm thảo linh
Xem chi tiết
Nguyễn Linh Chi
25 tháng 6 2019 lúc 15:56

\(x=\frac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}}=\frac{2\left(\sqrt[3]{4}-\sqrt[3]{2}\right)}{\left(\sqrt[3]{4}-\sqrt[3]{2}\right)\left(\sqrt[3]{4^2}+\sqrt[3]{4}.\sqrt[3]{2}+\sqrt[3]{2^2}\right)}\)
\(=\frac{2\left(\sqrt[3]{4}-\sqrt[3]{2}\right)}{\left(\sqrt[3]{4}\right)^3-\left(\sqrt[3]{2}\right)^3}=\sqrt[3]{4}-\sqrt[3]{2}\)

\(y=\frac{6}{2\sqrt[3]{2}-2+\sqrt[3]{4}}=\frac{2\left(\sqrt[3]{4}+\sqrt[3]{2}\right)}{\left(\sqrt[3]{4}+\sqrt[3]{2}\right)\left(\sqrt[3]{4^2}-\sqrt[3]{4}.\sqrt[3]{2}+\sqrt[3]{2^2}\right)}\)

\(=\frac{6\left(\sqrt[3]{4}+\sqrt[3]{2}\right)}{\left(\sqrt[3]{4}\right)^3+\left(\sqrt[3]{2}\right)^3}=\sqrt[3]{4}+\sqrt[3]{2}\)

\(P=\frac{xy}{x+y}=\frac{\sqrt[3]{4^2}-\sqrt[3]{2^2}}{2\sqrt[3]{4}}=\frac{\sqrt[3]{4}-1}{2}\)

Phạm Mạnh Kiên
Xem chi tiết
Akai Haruma
19 tháng 7 2021 lúc 17:41

Bài 1:
a.

\(\frac{1}{2\sqrt{2}-3\sqrt{3}}=\frac{2\sqrt{2}+3\sqrt{3}}{(2\sqrt{2}-3\sqrt{3})(2\sqrt{2}+3\sqrt{3})}=\frac{2\sqrt{2}+3\sqrt{3}}{(2\sqrt{2})^2-(3\sqrt{3})^2}=\frac{2\sqrt{2}+3\sqrt{3}}{-19}\)

b.

\(=\sqrt{\frac{(3-\sqrt{5})^2}{(3-\sqrt{5})(3+\sqrt{5})}}=\sqrt{\frac{(3-\sqrt{5})^2}{3^2-5}}=\sqrt{\frac{(3-\sqrt{5})^2}{4}}=\sqrt{(\frac{3-\sqrt{5}}{2})^2}=|\frac{3-\sqrt{5}}{2}|=\frac{3-\sqrt{5}}{2}\)

 

Akai Haruma
19 tháng 7 2021 lúc 17:43

Bài 2.

a. 

\(=\frac{\sqrt{8}(\sqrt{5}+\sqrt{3})}{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})}=\frac{2\sqrt{2}(\sqrt{5}+\sqrt{3})}{5-3}=\sqrt{2}(\sqrt{5}+\sqrt{3})=\sqrt{10}+\sqrt{6}\)

b.

\(=\sqrt{\frac{(2-\sqrt{3})^2}{(2-\sqrt{3})(2+\sqrt{3})}}=\sqrt{\frac{(2-\sqrt{3})^2}{2^2-3}}=\sqrt{(2-\sqrt{3})^2}=|2-\sqrt{3}|=2-\sqrt{3}\)

Akai Haruma
19 tháng 7 2021 lúc 17:48

Bài 3:

a.

\(M=\left[\frac{15(\sqrt{6}-1)}{(\sqrt{6}+1)(\sqrt{6}-1)}+\frac{4(\sqrt{6}+2)}{(\sqrt{6}-2)(\sqrt{6}+2)}-\frac{12(3+\sqrt{6})}{(3-\sqrt{6})(3+\sqrt{6})}\right](\sqrt{6}+11)\)

\(=\left[\frac{15(\sqrt{6}-1)}{6-1}+\frac{4(\sqrt{6}+2)}{6-2^2}-\frac{12(3+\sqrt{6})}{3^2-6}\right](\sqrt{6}+11)\)

\(=[3(\sqrt{6}-1)+2(\sqrt{6}+2)-4(3+\sqrt{6})](\sqrt{6}+11)=(\sqrt{6}-11)(\sqrt{6}+11)=6-11^2=-115\)

b.

\(N=\left[1-\frac{\sqrt{5}(\sqrt{5}+1)}{\sqrt{5}+1}\right].\left[\frac{\sqrt{5}(\sqrt{5}-1)}{1-\sqrt{5}}-1\right]\)

\(=(1-\sqrt{5})(-\sqrt{5}-1)=(\sqrt{5}-1)(\sqrt{5}+1)=5-1=4\)

Nguyễn Anh Kim Hân
Xem chi tiết
tthnew
8 tháng 7 2019 lúc 8:36

Em thử nhá, ko chắc đâu ạ. Em chỉ làm đc một cái thôi

Gọi biểu thức trên là A

*Chứng minh A > 1/6

Đặt \(x=\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}\left(\text{n dấu căn}\right)\)

Thì \(x=\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}< \sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{9}}}}=\sqrt{6+3}=3\) (1)

\(x^2-6=\sqrt{6+\sqrt{6+...+\sqrt{6}}}\left(\text{n -1 dấu căn}\right)\)

Biểu thức trở thành \(A=\frac{3-x}{9-x^2}=\frac{1}{3+x}\). Từ (1) suy ra \(A>\frac{1}{3+3}=\frac{1}{6}\)(*)

ppeachy do
Xem chi tiết
Lizy
Xem chi tiết
Tô Mì
16 tháng 10 2023 lúc 21:06

1. \(\sqrt[3]{8}=2.\)

2. \(A=\sqrt{16a^2}=4\left|a\right|\)

\(\Rightarrow\left[{}\begin{matrix}A=4a\left(a\ge0\right)\\A=-4a\left(a< 0\right)\end{matrix}\right..\)

3. \(B=\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}=\dfrac{\left(9-2\sqrt{3}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}{\left(3\sqrt{6}\right)^2-\left(2\sqrt{2}\right)^2}=\dfrac{23\sqrt{6}}{46}=\dfrac{\sqrt{6}}{2}.\)

4. C.

ppeachy do
Xem chi tiết
Nàng tiên cá
Xem chi tiết
Phạm Thị Thùy Linh
2 tháng 7 2019 lúc 20:24

\(a,\frac{2\sqrt{10}-5}{4-\sqrt{10}}=\frac{\left(2\sqrt{10}-5\right)\left(4+\sqrt{10}\right)}{\left(4-\sqrt{10}\right)\left(4+\sqrt{10}\right)}=\frac{20+6\sqrt{10}-5\sqrt{10}-9}{16-10}.\)

\(=\frac{11-\sqrt{10}}{6}\)

\(b,=\frac{\left(9-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}{\left(3\sqrt{6}-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}=\frac{\left(9-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}{54-8}\)

\(=\frac{\left(9-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}{46}\)