Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
titanic
Xem chi tiết
Thanh Tùng DZ
19 tháng 5 2018 lúc 16:04

Ta có : ( x - 2 )2 \(\ge\)\(\Leftrightarrow\)x2 - 4x + 4 \(\ge\)0

\(\Rightarrow\)  x2 \(\ge\)4x - 4 \(\Rightarrow\)x2 \(\ge\)4 . ( x - 1 ) \(\Rightarrow\)\(\frac{x^2}{x-1}\)\(\ge\)4

\(\Rightarrow\frac{4a^2}{a-1}+\frac{5b^2}{b-1}+\frac{3c^2}{c-1}\ge4.4+5.4+3.4=48\)

Song Lam Diệp
Xem chi tiết
ngonhuminh
19 tháng 5 2018 lúc 20:35

qua vo van

 Mashiro Shiina
19 tháng 5 2018 lúc 22:37

Thôi làm luôn nãy h chém nhiều mỏi tay quá. Bổ sung điều kiện a;b;c>1

\(\dfrac{4a^2}{a-1}+\dfrac{5b^2}{b-1}+\dfrac{3c^2}{c-1}\ge48\)

\(\Rightarrow\left(\dfrac{4a^2}{a-1}-16\right)+\left(\dfrac{5b^2}{b-1}-20\right)+\left(\dfrac{3c^2}{c-1}-12\right)\ge0\)

\(\Rightarrow\dfrac{4a^2-16a+16}{a-1}+\dfrac{5b^2-20b+20}{b-1}+\dfrac{3c^2-12c+12}{c-1}\ge0\)

\(\Rightarrow\dfrac{4\left(a-2\right)^2}{a-1}+\dfrac{5\left(b-2\right)^2}{b-1}+\dfrac{3\left(c-2\right)^2}{c-1}\ge0\) (đúng)

Dấu "=" khi \(a=b=c=2\)

Isolde Moria
19 tháng 5 2018 lúc 22:11

Nhận xét :

Nhìn vào bất đẳng thức dễ thấy ở phần tử các aanrr đều ở bậc 2 còn mẫu thì lại bậc 1 nên cần điều kiện rõ ràng hơn cho a,b và c

Tử số của các phân tử luôn dương , với điều kiện a,b,c > 0 thì mẫu rõ ràng có thể nhận giá trị âm khiên cả biểu thức bé hơn không ( mâu thuẫn đề ra ). Ví dụ khi a=b=c=\(\dfrac{1}{2}\)

=> VT \(=\dfrac{1}{1-\dfrac{1}{2}}\left(4a^2+5b^2+6c^2\right)=-2\left(4a^2+5b^2+6c^2\right)< 0\)(1)

Mà VT \(\ge48\)(2)

Thấy (1) và (2) mâu thuẫn

=> Đề sai hoặc thiểu điều kiện cho a,b và c

Ngọc Hạnh Nguyễn
Xem chi tiết
Không Tên
Xem chi tiết
Nguyễn Tấn Dũng
4 tháng 4 2017 lúc 22:56

a) Ta có:

\(\dfrac{a^2}{a-1}\) \(\geq\) 4(*)

\(\Leftrightarrow\) a2 \(\geq\) 4.(a-1)

\(\Leftrightarrow\) a2 \(\geq\) 4a-4

\(\Leftrightarrow\) a2-4a+4 \(\geq\) 0

\(\Leftrightarrow\) (a-2)2 \(\geq\) 0(**)

Ta có BĐT(**) luôn đúng nên suy ra BĐT(*) luôn đúng

Dấu = xảy ra khi và chỉ khi a=2

B) Áp dụng câu a ta được:

\(\dfrac{4a^2}{a-1}=4.\dfrac{a^2}{a-1}\) \(\geq\) 4.4=16(1)

\(\dfrac{5b^2}{b-1}=5.\dfrac{b^2}{b-1}\) \(\geq\) 5.4=20(2)

\(\dfrac{3c^2}{c-1}=3.\dfrac{c^2}{c-1}\) \(\geq\) 3.4=12(3)

Cộng các BĐT(1),(2),(3) ta được

\(\dfrac{4a^2}{a-1}+\dfrac{5b^2}{b-1}+\dfrac{3c^2}{c-1}\) \(\geq\) 16+20+12=48

Dấu = xảy ra khi và chỉ khi a=b=c=2

Đặt A= \(\dfrac{4a^2}{a-1}+\dfrac{8b^2}{b-1}+\dfrac{12c^2}{c-1}\)

Áp dụng BĐT đã CM ta có:

A= \(\dfrac{4a^2}{a-1}+\dfrac{8b^2}{b-1}+\dfrac{12c^2}{c-1}\) \(\geq\) 4.4+8.4+12.4=16+32+48=96

\(\Rightarrow\) \(\dfrac{4a^2}{a-1}+\dfrac{8b^2}{b-1}+\dfrac{12c^2}{c-1}\) \(\geq\) 96

hay A \(\geq\) 96

Dấu = xảy ra khi và chỉ khi a=b=c=2

Vậy MinA=96 khi và chỉ khi a=b=c=2

Phan Cả Phát
4 tháng 4 2017 lúc 22:11

a)

Ta có :

\(\dfrac{a^2}{a-1}\ge4\) (1)

\(\Leftrightarrow\dfrac{a^2}{a-1}\ge\dfrac{4a-4}{a-1}\left(\forall a-1\ne0\right)\)

\(\Leftrightarrow a^2\ge4a-4\)

\(\Leftrightarrow a^2-4a+4\ge0\)

\(\Leftrightarrow\left(a-2\right)^2\ge0\)(luôn đúng) (2)

BĐT (2) đúng suy ra BĐT (1) luôn đúng

Dấu bằng xảy ra chỉ khi và khi a = 2

Trần Anh Thơ
Xem chi tiết
Trần Quốc Khanh
3 tháng 4 2020 lúc 20:22

Ta có: BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)( CM bằng BĐT Shwars nha).Áp dụng ta có:

\(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5a}+\frac{1}{3a+2b+4c}\ge\frac{9}{9a+6b+12c}=\frac{3}{3a+2b+4c}\left(1\right)\)

\(\frac{1}{b+3c+5a}+\frac{1}{c+3a+5b}+\frac{1}{3b+2c+4a}\ge\frac{9}{9b+6c+12a}=\frac{3}{3b+2c+4a}\left(2\right)\)

\(\frac{1}{c+3a+5b}+\frac{1}{a+3b+5c}+\frac{1}{3c+2a+4b}\ge\frac{9}{9c+6a+12b}=\frac{3}{3c+2a+4b}\left(3\right)\)

Cộng (1),(2) và (3) có:

\(2\left(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5c}+\frac{1}{c+3a+5b}\right)+\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\ge3\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\)

\(\Rightarrow2VP\ge2VT\)

\(\RightarrowĐPCM\)

Khách vãng lai đã xóa
Hà Phạm Như Ý
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết

Violympic toán 8

Khách vãng lai đã xóa

Xin ngoại lệ ạ ( Ko liên quan đến câu hỏi)

Violympic toán 8

Khách vãng lai đã xóa
Nguyễn Ngọc Minh Anh
Xem chi tiết
ng hong hanh
Xem chi tiết
Đoàn Đại Danh
22 tháng 7 2017 lúc 7:53

ko biết

ai trả lời giùm mình,mình k cho

ng hong hanh
8 tháng 8 2017 lúc 16:41

bn rảnh quá

Đặng Thúy An
11 tháng 8 2017 lúc 8:24

Hạnh ơi đề sai cô Tâm cho sửa lại rồi 

cho : \(\frac{4a-3b}{5}=\frac{5b-4c}{3}=\frac{3c-5a}{4}\)