Ta có \(\frac{4a^2}{a-1}=\frac{4a^2-4+4}{a-1}=\frac{4\left(a^2-1\right)+4}{a-1}\)
\(=\frac{4\left(a-1\right)\left(a+1\right)+4}{a-1}=4\left(a+1\right)+\frac{4}{a-1}\)
\(=4\left(a-1\right)+\frac{4}{a-1}+8\)
Vì \(a>1\Rightarrow a-1>0\), áp dụng bđt cosi cho 2 số 4(a-1) và \(\frac{4}{a-1}\)ta được
\(4\left(a-1\right)+\frac{4}{a-1}\ge2\sqrt{\frac{4\left(a-1\right).4}{a-1}}=2\sqrt{4^2}=8\)
\(\Leftrightarrow4\left(a-1\right)+\frac{4}{a-1}+8\ge16\)
\(\Leftrightarrow\frac{4a^2}{a-1}\ge16\) (1)
Chững minh tương tự, ta được
\(\frac{5b^2}{b-1}\ge20\) (2)
\(\frac{3c^2}{c-1}\ge12\) (3)
Cộng (1)(2)(3) ta được
\(\frac{4a^2}{a-1}+\frac{5b^2}{b-1}+\frac{3b^2}{c-1}\ge48\)