Thôi làm luôn nãy h chém nhiều mỏi tay quá. Bổ sung điều kiện a;b;c>1
\(\dfrac{4a^2}{a-1}+\dfrac{5b^2}{b-1}+\dfrac{3c^2}{c-1}\ge48\)
\(\Rightarrow\left(\dfrac{4a^2}{a-1}-16\right)+\left(\dfrac{5b^2}{b-1}-20\right)+\left(\dfrac{3c^2}{c-1}-12\right)\ge0\)
\(\Rightarrow\dfrac{4a^2-16a+16}{a-1}+\dfrac{5b^2-20b+20}{b-1}+\dfrac{3c^2-12c+12}{c-1}\ge0\)
\(\Rightarrow\dfrac{4\left(a-2\right)^2}{a-1}+\dfrac{5\left(b-2\right)^2}{b-1}+\dfrac{3\left(c-2\right)^2}{c-1}\ge0\) (đúng)
Dấu "=" khi \(a=b=c=2\)
Nhận xét :
Nhìn vào bất đẳng thức dễ thấy ở phần tử các aanrr đều ở bậc 2 còn mẫu thì lại bậc 1 nên cần điều kiện rõ ràng hơn cho a,b và c
Tử số của các phân tử luôn dương , với điều kiện a,b,c > 0 thì mẫu rõ ràng có thể nhận giá trị âm khiên cả biểu thức bé hơn không ( mâu thuẫn đề ra ). Ví dụ khi a=b=c=\(\dfrac{1}{2}\)
=> VT \(=\dfrac{1}{1-\dfrac{1}{2}}\left(4a^2+5b^2+6c^2\right)=-2\left(4a^2+5b^2+6c^2\right)< 0\)(1)
Mà VT \(\ge48\)(2)
Thấy (1) và (2) mâu thuẫn
=> Đề sai hoặc thiểu điều kiện cho a,b và c
Sửa đề thành \(a;b;c>1\) . Có thể làm được. Còn nếu a;b;c>0 sai ngay với \(0< a;b;c< 1\)
Điều kiện : a,b,c khác 1: ta có: x² - 4x + 4 ≥ 0
=> x² ≥ 4.(x - 1)
=> x²\(x-1) ≥ 4
=> 4a²\(a-1) + 5b²\(b-1) + 3c²\(c-1) ≥ 4.4 + 5.4 + 3.4 = 48