1)Cho 3 số thực dương,chứng minh bất đẳng thức:
\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge a^2+b^2+c^2\)
2)Giải phương trình:
\(\dfrac{2x-1}{x^2}+\dfrac{y-1}{y^2}+\dfrac{6z-9}{z^2}=\dfrac{9}{4}\)
2. Cho a>0; b>0; c>0
Chứng minh bất đẳng thức (a+b+c)\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)\(\ge\) 9
Cho a,b,c > 0 chứng minh \(\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{c^2}{a^3}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Cho \(a,b,c>0\) thỏa mãn \(a^4+b^4+c^4=3\). Chứng minh:
\(\dfrac{a^2}{b^3+1}+\dfrac{b^2}{c^3+1}+\dfrac{c^2}{a^3+1}\ge\dfrac{3}{2}\)
Cho a,b,c >0. Chứng minh:
\(\dfrac{a^2}{b^5}+\dfrac{b^2}{c^5}+\dfrac{c^2}{a^5}\ge\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\)
cho a,b,c >0 và a+b+c=3 .chứng minh \(\dfrac{1}{\sqrt{2a^2+1}}+\dfrac{1}{\sqrt{2b^2+1}}+\dfrac{1}{\sqrt{2c^2+1}}\ge\sqrt{3}\)
Cho a, b, c là số thực dươn. Chứng minh bất đẳng thức:
\(\dfrac{1}{a\left(a^2+8ab\right)}+\dfrac{1}{b\left(b^2+8ac\right)}+\dfrac{1}{c\left(c^2+8ab\right)}\le\dfrac{1}{3abc}\)
Cho a, b, c > 0 và \(a+b+c=1\). Chứng minh: \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ca+a^2}\ge\dfrac{1}{3}\)
Cho a, b, c > 0 thoả mãn: \(a+b+c=1\). Chứng minh: \(\dfrac{ab}{a^2+b^2}+\dfrac{bc}{b^2+c^2}+\dfrac{ca}{c^2+a^2}+\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{15}{4}\)