Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Quốc Khánh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 8 2017 lúc 7:14

Đáp án cần chọn là: A

Trần Thúy Hường
Xem chi tiết
Angle Love
9 tháng 6 2016 lúc 14:20

a165b chia hết cho 9

=>a+b+12 chia hết cho 9

=>a+b+12=18 hoặc a+b+12=27

=>a+b=6 hoặc a+b=15

mà a-2=b

nên a=4,b=2

Nguyễn Ngọc Anh Minh
9 tháng 6 2016 lúc 14:29

+ Ta có a-2=b => a-b=2 => hai số cách nhau 2 đơn vị => a và b phải cùng chẵn hoặc cùng lẻ => a+b phải là 1 số chẵn

+ Để a165b chia hết cho 9 => a+1+6+5+b=12+a+b phải chia hết cho 9

=> a+b=6 hoặc a+b=15

Nhưng do a+b chẵn => a+b=6

Chữ số b là

(6-2):2=2

Chữ số a là

2+2=4

Tường Vy
9 tháng 6 2016 lúc 14:33

+ Ta có a‐2=b => a‐b=2 => hai số cách nhau 2 đơn vị => a và b phải cùng chẵn hoặc cùng lẻ => a+b phải là 1 số chẵn

+ Để a165b chia hết cho 9 => a+1+6+5+b=12+a+b phải chia hết cho 9

=> a+b=6 hoặc a+b=15

Nhưng do a+b chẵn => a+b=6

Chữ số b là ﴾6‐2﴿:2=2

Chữ số a là 2+2=4 

Ngô Bảo Châu
Xem chi tiết
nguyen thu ha
Xem chi tiết
Công chúa Phương Thìn
9 tháng 10 2016 lúc 20:50

\(A=1+2+2^2+2^3+...+2^{2015}\)

\(2A=2+2^2+2^3+...+2^{2016}\)

\(2A-A=2+2^2+2^3+...+2^{2016}-1-2-2^2-....-2^{2015}\)

\(A=2^{2016}-1\)

\(=>A=B\)

nguyen thu ha
Xem chi tiết
Đào Thu Hoà
Xem chi tiết
alibaba nguyễn
16 tháng 1 2019 lúc 9:05

1/ \(4\left(a^2-ab+b^2\right)⋮3\)

\(\Rightarrow\left(2a-b\right)^2+3b^2⋮3\)

\(\Rightarrow\left(2a-b\right)^2⋮3\)

\(\Rightarrow2a-b⋮3\)

\(\Rightarrow\left(2a-b\right)^2⋮9\)

\(\Rightarrow3b^2⋮9\)

\(\Rightarrow b⋮3\)

\(\Rightarrow a⋮3\)

alibaba nguyễn
16 tháng 1 2019 lúc 13:21

Câu 2 làm hoi dài nên lười

tth_new
1 tháng 9 2019 lúc 19:52

Câu 2 em nghĩ là dùng dồn biến.Câu 2 nếu làm kỹ sẽ rất dài do đó em làm khá tắt, vì vậy không thể tránh khỏi những sai sót khi quy đồng, chị tự kiểm tra lại:P

Giả sử c = min{a,b,c} suy ra \(1\ge3c^2+2c^3\Leftrightarrow0< c\le\frac{1}{2}\)

Chọn t > 0 thỏa mãn: \(2t^2+2t^2c=a^2+b^2+2abc\Leftrightarrow2t^2-\left(a^2+b^2\right)=2c\left(ab-t^2\right)\)

Giả sử \(ab>t^2\Rightarrow2t^2>a^2+b^2\ge2ab\Rightarrow t^2>ab\) (trái với giả us73)

Vậy giả sử sai hay \(ab\le t^2\text{ và }a^2+b^2\ge2t^2\ge2ab\)

Đặt \(f\left(a;b;c\right)=ab+bc+ca-abc\)

Xét hiệu \(d=f\left(a;b;c\right)-f\left(t;t;c\right)\)

\(=\left(ab-t^2\right)+c\left(a+b-2t\right)-c\left(ab-t^2\right)\)

\(=\left(1-c\right)\left(ab-t^2\right)+\frac{c\left(a^2+b^2-2t^2\right)+2c\left(ab-t^2\right)}{a+b+2t}\)

\(=\left(1-c\right)\left(ab-t^2\right)+\frac{\left(2t^2-\left(a^2+b^2\right)\right)-c\left(2t^2-\left(a^2+b^2\right)\right)}{a+b+2t}\)

\(=\frac{\left(1-c\right)\left(2t^2-\left(a^2+b^2\right)\right)}{2c}+\frac{\left(2t^2-\left(a^2+b^2\right)\right)-c\left(2t^2-\left(a^2+b^2\right)\right)}{a+b+2t}\)

\(=\frac{\left(1-c\right)\left(2t^2-\left(a^2+b^2\right)\right)}{2c}+\frac{\left(2t^2-\left(a^2+b^2\right)\right)\left(1-c\right)}{a+b+2t}\)

\(=\left(1-c\right)\left(2t^2-\left(a^2+b^2\right)\right)\left[\frac{1}{2c}+\frac{1}{a+b+2t}\right]\le0\)

Do đó \(f\left(a;b;c\right)\le f\left(t;t;c\right)=t^2+2tc-t^2c\). Ta cần tìm max của f(t;t;c). Mặt khác từ cách chọn t ta thấy:

\(2t^2+c^2+2t^2c=1\Leftrightarrow t=\sqrt{\frac{1-c}{2}}\). Do đó 

\(f\left(t;t;c\right)=\frac{1-c}{2}+2\sqrt{\frac{1-c}{2}}.c-\frac{\left(1-c\right)c}{2}\) với \(0< c\le\frac{1}{2}\)

Dễ thấy f(t;t;c) là hàm đồng biến với \(0< c\le\frac{1}{2}\) nên f(t;t;c) đạt max tại c = 1/2. Khi đó \(f\left(t;t;c\right)=\frac{5}{8}\)

Vậy.....

Nguyễn Hương	Giang
Xem chi tiết
Nguyễn Minh Quang
14 tháng 10 2021 lúc 7:46

ta có : 

23a+5b6 chia hết cho 9 thì \(2+3+a+5+b+6\text{ chia hết cho 9 hay }a+b+16\text{ chia hết cho 9}\)

vậy a+b =2 hoặc a+b= 11

mà a-b=3 nên ta có : a=7 b=4

Khách vãng lai đã xóa
mai đức anh
Xem chi tiết
Trần Tuấn Hoàng
17 tháng 4 2022 lúc 10:43

a2b+a+b             ab2+b+1

a2b+a+\(\dfrac{a}{b}\)            \(\dfrac{a}{b}\)

_________

          \(b-\dfrac{a}{b}\)

-Để a2b+a+b chia hết cho ab2+b+1 thì:

\(b-\dfrac{a}{b}=0\Leftrightarrow\dfrac{b^2-a}{b}=0\Rightarrow b^2=a\)

-Vậy với \(b^2=a\) và \(b\ne0\) thì ta có đpcm.