a2b+a+b ab2+b+1
a2b+a+\(\dfrac{a}{b}\) \(\dfrac{a}{b}\)
_________
\(b-\dfrac{a}{b}\)
-Để a2b+a+b chia hết cho ab2+b+1 thì:
\(b-\dfrac{a}{b}=0\Leftrightarrow\dfrac{b^2-a}{b}=0\Rightarrow b^2=a\)
-Vậy với \(b^2=a\) và \(b\ne0\) thì ta có đpcm.
a2b+a+b ab2+b+1
a2b+a+\(\dfrac{a}{b}\) \(\dfrac{a}{b}\)
_________
\(b-\dfrac{a}{b}\)
-Để a2b+a+b chia hết cho ab2+b+1 thì:
\(b-\dfrac{a}{b}=0\Leftrightarrow\dfrac{b^2-a}{b}=0\Rightarrow b^2=a\)
-Vậy với \(b^2=a\) và \(b\ne0\) thì ta có đpcm.
cho các số nguyên a,b,c thỏa mãn: A= a^2+b^2+ab+3(a+b)+2018 chia hết cho 5.CMR a-b chia hết cho 5.
Bài 1: Cho a,b,c là các số thực dương thỏa nãm a+b+c=1. Tìm GTNN của biểu thức
\(H=\frac{a+bc}{b+c}+\frac{b+ca}{c+a}+\frac{c+ab}{a+b}\)
Bài 2:Cho a,b là các số thực dương thỏa mãn \(a^2-6ab-2b^2=0\)
Tính giá trị của biểu thức \(P=\frac{ab}{a^2+2b^2}\)
Cho a, b, c là các số thực dương thay đổi thỏa mãn điều kiện: a+b+c=1.
Tìm GTNN của biểu thức:
M=14(\(a^2\)+\(b^2\)+\(c^2\))+\(\dfrac{ab+ac+bc}{a^2b+b^2c+c^2a}\)
câu1:
a) Cho các số thực không âm a, b, c thỏa mãn a + b + c =1. Tìm giá trị lớn nhất và giá trị nhỏ
nhất của biểu thức:
P=\(\frac{ab+bc+ca-abc}{a+2b+c}\)
b) Cho các số thực a, b, c thỏa mãn \(^{a^2+b^2+c^2=1}\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P =ab +bc + ca .
Tìm các cặp số nguyên (a,b) thỏa mãn \(a^2+ab+b^2=a^2b^2\)
cho các số thực a,b thỏa mãn a^3 - 2b^3 = ab(a - 2b). Tìm GTNN của biểu thức P = a^2 + b^2 + 2a + 4b + 10
Cho biểu thức P =\(\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2a+2c-b\right)^2\)
1) Chứng minh P =\(9\left(a^2+b^2+c^2\right)\)
2)Nếu a,b,c là các số thực thỏa mãn ab + bc + ca = -1, tìm giá trị nhỏ nhất của biểu thức P
cho a b c là các số thực dương thỏa mãn a+b+c=1. tìm giá trị lớn nhất và nhỏ nhất của p=ab+bc+ca-abc/a+2b+c
Cho a,b,c là các số dương thỏa mãn: a + b + c = 3. Tìm GTNN của:
\(P=a^2+b^2+c^2+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\)