Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hương Giang
Xem chi tiết
Nguễn Hoài Phi
Xem chi tiết
Hoàng Lê Bảo Ngọc
13 tháng 7 2016 lúc 16:52

Ta có : \(a+b+c+d=0\Leftrightarrow a+d=-\left(b+c\right)\)

\(\Leftrightarrow\left(a+d\right)^3=-\left(b+c\right)^3\)

\(\Leftrightarrow a^3+d^3+3ad\left(a+d\right)=-\left[c^3+b^3+3bc\left(b+c\right)\right]\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ad\left(a+d\right)-3bc\left(b+c\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3ad\left(b+c\right)-3bc\left(b+c\right)\) (vì a + d = - b - c )

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(b+c\right)\left(ad-bc\right)\)

Linh Suzu
Xem chi tiết
Nguyễn Thị Lệ Quyên
Xem chi tiết
nguyễn thị mai hương
Xem chi tiết
Phùng Minh Quân
16 tháng 9 2018 lúc 17:47

\(a)\)\(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)

\(\Leftrightarrow\)\(\frac{a+b+c+d}{a-b+c-d}=\frac{a+b-c-d}{a-b-c+d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a+b+c+d}{a-b+c-d}=\frac{a+b-c-d}{a-b-c+d}=\frac{a+b+c+d+a+b-c-d}{a-b+c-d+a-b-c+d}=\frac{2\left(a+b\right)}{2\left(a-b\right)}=\frac{a+b}{a-b}\) \(\left(1\right)\)

Lại có : 

\(\frac{a+b+c+d}{a-b+c-d}=\frac{a+b-c-d}{a-b-c+d}=\frac{a+b+c+d-a-b+c+d}{a-b+c-d-a+b+c-d}=\frac{2\left(c+d\right)}{2\left(c-d\right)}=\frac{c+d}{c-d}\) \(\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)\(\Leftrightarrow\)\(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b+a-b}{c+d+c-d}=\frac{2a}{2c}=\frac{a}{c}\) \(\left(3\right)\)

Lại có : 

\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b-a+b}{c+d-c+d}=\frac{2b}{2d}=\frac{b}{d}\) \(\left(4\right)\)

Từ \(\left(3\right)\) và \(\left(4\right)\) suy ra \(\frac{a}{c}=\frac{b}{d}\) ( đpcm ) 

Chúc bạn học tốt ~ 

Phùng Minh Quân
16 tháng 9 2018 lúc 18:13

\(b)\)\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\)\(a^2+b^2+c^2-ab-bc-ca=0\) ( vì \(a+b+c=0\) ) 

\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c}\)

Vậy ... 

Chúc bạn học tốt ~ 

kudo shinichi
16 tháng 9 2018 lúc 18:30

Phùng Minh Quân: hình như câu b làm nhầm đề rồi đấy.

\(a+b+c=0\)

\(\Rightarrow a+b=-c\)

\(\left(a+b\right)^3=\left(-c\right)^3\)

\(a^3+3a^2b+3ab^2+b^3=-c^3\)

\(\Rightarrow a^3+b^3+c^3+3ab\left(a+b\right)=0\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

                                   đpcm

Tham khảo nhé~

Quân Nguyễn Anh
Xem chi tiết
Nguyễn Quang Linh
5 tháng 8 2015 lúc 16:36

a) Ta có: (a + b + c + d)(a - b - c +d )=( (a + d) + (b + c) )( (a + d) - (b + c) )

                                                     =(a + d )- (b +c )2                             (1)

              (a - b + c - d)(a + b - c - d)=(a - d)- (b - c)2                                  (2)

Từ (1) và (2)  => a+ 2ad + d- b- 2bc - c2=a- 2ad + d- b+ 2bc - c2

4ad=4bc => ad=bc <=> \(\frac{a}{c}=\frac{b}{d}\)  (đpcm)

 

Mai Thị Lệ Thủy
Xem chi tiết
ĐoànThùyDuyên
Xem chi tiết
Phùng Khánh Linh
26 tháng 6 2018 lúc 20:38

\(a.a^3+b^3+c^3=3abc\)

\(a^3+b^3+c^3-3abc=0\)

\(\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

Với : a + b + c = 0 thì dễ thấy đẳng thức trên đúng .

Từ đó suy ra : đpcm .

\(b.a+b+c+d=0\)

\(a+b=-\left(c+d\right)\)

\(\left(a+b\right)^3=-\left(c+d\right)^3\)

\(a^3+b^3+3a^2b+3ab^2=-\left(c^3+3c^2d+3cd^2+d^3\right)\)

\(a^3+b^3+c^3+d^3=-3c^2d-3cd^2-3a^2b-3ab^2\)

\(a^3+b^3+c^3+d^3=-3cd\left(c+d\right)-3ab\left(a+b\right)\)

\(a^3+b^3+c^3+d^3=-3cd\left(c+d\right)+3ab\left(c+d\right)\)

\(a^3+b^3+c^3+d^3=3\left(c+d\right)\left(ab-cd\right)\) ( đpcm)

Hày Cưi
Xem chi tiết
Không Tên
8 tháng 11 2018 lúc 17:51

\(a^2+b^2=2ab\)

<=>  \(a^2+b^2-2ab=0\)

<=>  \(\left(a-b\right)^2=0\)

<=>   \(a-b=0\)

<=>  \(a=b\)  (đpcm)

Không Tên
8 tháng 11 2018 lúc 18:01

\(a^3+b^3+c^3=3abc\)

<=>  \(a^3+b^3+c^3-3abc=0\)

<=>  \(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

<=>   \(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

<=>  \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

<=>  \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)

Xét:  \(a^2+b^2+c^2-ab-bc-ca=0\)

<=>  \(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

<=>  \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

<=>  \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)

<=>  \(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)

<=>  \(a=b=c\)

=>  đpcm

Không Tên
8 tháng 11 2018 lúc 18:03

cách khác:

Áp dụng BĐT AM-GM ta đc:

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Dấu "=" xảy ra  <=>  \(a=b=c\)

c)  bạn lm tương tự