\(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
\(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
Tính
Đặt \(x=\sqrt[3]{20+14\sqrt[]{2}}+\sqrt[3]{20-14\sqrt[]{2}}\)
\(\Rightarrow x^3=40+3\sqrt[3]{\left(20+14\sqrt[]{2}\right)\left(20-14\sqrt[]{2}\right)}.\left(\sqrt[3]{20+14\sqrt[]{2}}+\sqrt[3]{20-14\sqrt[]{2}}\right)\)
\(\Rightarrow x^3=40+6x\)
\(\Rightarrow x^3-6x-40=0\)
\(\Rightarrow\left(x-4\right)\left(x^2+4x+10\right)=0\)
\(\Rightarrow x=4\)
Vậy \(\sqrt[3]{20+14\sqrt[]{2}}+\sqrt[3]{20-14\sqrt[]{2}}=4\)
rut gon $\sqrt[3]{20+14$\sqrt{2}$}$ + $\sqrt[3]{20-14$\sqrt{2}$}$
\(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20+14\sqrt{2}}\)
= \(\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(2+\sqrt{2}\right)^3}\) = \(2+\sqrt{2}+2+\sqrt{2}\) = 4+\(2\sqrt{2}\)
Lộn nha = \(2\sqrt[3]{20+14\sqrt{2}}\) mới đúng nha.
Rút gọn biểu thức :
a) A=\(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\).
b)B=\(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
c) C=\(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}.\)
a) Ta có: \(A^3=\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)^3\)
\(=2+\sqrt{5}+2-\sqrt{5}+3\cdot\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)
\(=4-3\cdot A\)
\(\Leftrightarrow A^3+3A-4=0\)
\(\Leftrightarrow A^3-A+4A-4=0\)
\(\Leftrightarrow A\left(A-1\right)\left(A+1\right)+4\left(A-1\right)=0\)
\(\Leftrightarrow\left(A-1\right)\left(A^2+A+4\right)=0\)
\(\Leftrightarrow A=1\)
\(\frac{\sqrt[3]{20+14\sqrt{2}}}{\sqrt[3]{20-14\sqrt{2}}}\)
Tính các giá trị của\(A=x^3-6x\) tại \(x=\sqrt[3]{14\sqrt{2}+20}+\sqrt[3]{-14\sqrt{2}+20}\)
`x=root{3}{14sqrt2+20}+sqrt{-14sqrt2+20}`
`<=>x^3=14sqrt2+20-14sqrt2+20+3root{3}{(14sqrt2+20)(20-14sqrt2)}(root{3}{14sqrt2+20}+sqrt{-14sqrt2+20})`
`<=>x^3=40+3root{3}{400-392}.x`
`<=>x^3=40+6x`
`<=>x^3-6x=40`
tính \(x=\sqrt[3]{20+14\sqrt{2}}-\sqrt[3]{20+14\sqrt{2}}\)
\(x=\sqrt[3]{30+14\sqrt{2}}-\sqrt[3]{20+14\sqrt{2}}\)
\(=\sqrt[3]{\left[2^3+3.2^2.\sqrt{2}+3.2+\sqrt{2^2}+\left(\sqrt{2}\right)^3\right]}+\sqrt[3]{\left[2^3-3.2.\sqrt{2}+3.2.\sqrt{2^2}-\left(\sqrt{2}\right)^3\right]}\)
\(=\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(2-\sqrt{2}\right)^3}\)
\(=2+\sqrt{2}+2-\sqrt{2}\)
\(=4\)
Vậy x = 4.
tính \(x=\sqrt[3]{20+14\sqrt{2}}-\sqrt[3]{20+14\sqrt{2}}\)
Tính: \(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
Ta có: \(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
\(=\sqrt[3]{8+12\sqrt{2}+12+2\sqrt{2}}+\sqrt[3]{8-12\sqrt{2}+12-2\sqrt{2}}\)
\(=\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(2-\sqrt{2}\right)^3}\)
\(=2+\sqrt{2}+2-\sqrt{2}\)
\(=4\)