`x=root{3}{14sqrt2+20}+sqrt{-14sqrt2+20}`
`<=>x^3=14sqrt2+20-14sqrt2+20+3root{3}{(14sqrt2+20)(20-14sqrt2)}(root{3}{14sqrt2+20}+sqrt{-14sqrt2+20})`
`<=>x^3=40+3root{3}{400-392}.x`
`<=>x^3=40+6x`
`<=>x^3-6x=40`
`x=root{3}{14sqrt2+20}+sqrt{-14sqrt2+20}`
`<=>x^3=14sqrt2+20-14sqrt2+20+3root{3}{(14sqrt2+20)(20-14sqrt2)}(root{3}{14sqrt2+20}+sqrt{-14sqrt2+20})`
`<=>x^3=40+3root{3}{400-392}.x`
`<=>x^3=40+6x`
`<=>x^3-6x=40`
Tính giá trị của biểu thức: \(A=x^3-6x\) với \(x=\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
a, A = \(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{14\sqrt{2}-20}\)
b, X = \(\sqrt[3]{1+\frac{\sqrt{84}}{9}}+\sqrt[3]{1-\frac{\sqrt{84}}{9}}\)
Tính giá trị của biểu thức sau:
\(a,^3\sqrt{26+15\sqrt{3}}-^3\sqrt{26-15\sqrt{3}}\)
\(b,^3\sqrt{9+4\sqrt{5}}+^3\sqrt{9-4\sqrt{5}}\)
\(c,^3\sqrt{20+14\sqrt{2}}+^3\sqrt{20-14\sqrt{2}}\)
Cho biểu thức:\(C=\dfrac{\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}}{\sqrt{x+2\sqrt{x-1}+\sqrt{x-2\sqrt{x-1}}}}\)
A)Thu gọn và tính giá trị của C tại \(x=3-\sqrt{3}\)
B)Giải phương trìnhC=x-1
C)Tìm tất cả các giá trị của x để \(C>C^3\)
Bài 4: Cho x = \(\sqrt[3]{20+14\sqrt{2}}-\sqrt[3]{14\sqrt{2}-20}\)
Lập phương trình có hệ số nguyên nhận x là một nghiệm
Bài 5: Cho x = \(\sqrt[3]{1+\sqrt{2}}-\sqrt[3]{\sqrt{2}-1}\)
Hãy tình giá trị của biểu thức y = \(x^3+3x+2015\)
Bài 7: Chứng minh số sau là số vô tỉ: \(2\sqrt{2}+\sqrt[3]{3}\)
rut gon $\sqrt[3]{20+14$\sqrt{2}$}$ + $\sqrt[3]{20-14$\sqrt{2}$}$
Cho biểu thức \(P=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}};x\ge0,x\ne1\)
a) Rút gọn P.
b) Tính giá trị của P tại x thỏa mãn \(\left|2x-5\right|=3\)
c) Tìm các giá trị của x để P = 3.
d) Tìm các giá trị của x để \(P>\dfrac{1}{2}\).
e) Tìm các giá trị nguyên của x để P có giá trị nguyên.
Rut gon:
a) \(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
b) \(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
c) \(\sqrt[3]{20+14\sqrt{2}}-\sqrt[3]{14\sqrt{2}-20}\)
Cho biểu thức sau:
\(A=\left[\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}}{3-\sqrt{x}}-\dfrac{3x+3}{x-9}\right]:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
a) Rút gọn biểu thức A.
b) Tính giá trị của A khi \(x=\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
c) Tìm các giá trị nguyên của x để A có giá trị nguyên.