\(X\)\(.\)\(25\)\(\%\)\(.\)\(X\)\(=\)\(\dfrac{-4}{3}\)
1/ (\(\left(-\dfrac{2}{3}\right)\)\(^2\) x \(\dfrac{-9}{8}\) - 25% x \(\dfrac{-16}{5}\)
2/ -1\(\dfrac{2}{5}\) x 75% + \(\dfrac{-7}{5}\) x 25%
3/ -2\(\dfrac{3}{7}\) x (-125%) + \(\dfrac{-17}{7}\) x 25%
4/ (-2)\(^3\) x (\(\dfrac{3}{4}\) x 0.25) : (2\(\dfrac{1}{4}\) - 1\(\dfrac{1}{6}\))
1) Ta có: \(\left(-\dfrac{2}{3}\right)^2\cdot\dfrac{-9}{8}-25\%\cdot\dfrac{-16}{5}\)
\(=\dfrac{4}{9}\cdot\dfrac{-9}{8}-\dfrac{1}{4}\cdot\dfrac{-16}{5}\)
\(=\dfrac{-1}{2}+\dfrac{4}{5}\)
\(=\dfrac{-5}{10}+\dfrac{8}{10}=\dfrac{3}{10}\)
2) Ta có: \(-1\dfrac{2}{5}\cdot75\%+\dfrac{-7}{5}\cdot25\%\)
\(=\dfrac{-7}{5}\cdot\dfrac{3}{4}+\dfrac{-7}{5}\cdot\dfrac{1}{4}\)
\(=\dfrac{-7}{5}\left(\dfrac{3}{4}+\dfrac{1}{4}\right)=-\dfrac{7}{5}\)
3) Ta có: \(-2\dfrac{3}{7}\cdot\left(-125\%\right)+\dfrac{-17}{7}\cdot25\%\)
\(=\dfrac{-17}{7}\cdot\dfrac{-5}{4}+\dfrac{-17}{7}\cdot\dfrac{1}{4}\)
\(=\dfrac{-17}{7}\cdot\left(\dfrac{-5}{4}+\dfrac{1}{4}\right)\)
\(=\dfrac{17}{7}\)
4) Ta có: \(\left(-2\right)^3\cdot\left(\dfrac{3}{4}\cdot0.25\right):\left(2\dfrac{1}{4}-1\dfrac{1}{6}\right)\)
\(=\left(-8\right)\cdot\left(\dfrac{3}{4}\cdot\dfrac{1}{4}\right):\left(\dfrac{9}{4}-\dfrac{7}{6}\right)\)
\(=\left(-8\right)\cdot\dfrac{3}{16}:\dfrac{54-28}{24}\)
\(=\dfrac{-3}{2}\cdot\dfrac{24}{26}\)
\(=\dfrac{-72}{52}=\dfrac{-18}{13}\)
Tính thuận tiện :
M = 3 + \(\dfrac{4}{9}\) x \(\dfrac{7}{25}\) x \(\dfrac{27}{12}\) x \(3\dfrac{4}{7}\) - \(\dfrac{7}{25}\)
Giải giúp e với
\(M=3+\dfrac{4}{9}\times\dfrac{7}{25}\times\dfrac{27}{12}\times3\dfrac{4}{7}-\dfrac{7}{25}\)
\(=3+\dfrac{4}{9}\times\dfrac{7}{25}\times\dfrac{27}{12}\times\dfrac{25}{7}-\dfrac{7}{25}\)
\(=3+\left(\dfrac{4}{9}\times\dfrac{27}{12}\right)\times\left(\dfrac{7}{25}\times\dfrac{25}{7}\right)-\dfrac{7}{25}\)
\(=3+\left(\dfrac{4\times3\times9}{9\times3\times4}\right)\times1-\dfrac{7}{25}\)
\(=3+1\times1-\dfrac{7}{25}\)
\(=3+1-\dfrac{7}{25}\)
\(=4-\dfrac{7}{25}\)
\(=\dfrac{100}{25}-\dfrac{7}{25}\)
\(=\dfrac{93}{25}\)
`3+4/9xx7/25xx27/12xx3 4/7-7/25`
`=3+4/9xx7/25xx27/12xx25/7-7/25`
`=3+7/25xx25/7xx4/9xx27/12-7/25`
`=3+4/9xx9/4xx1-7/25`
`=3+1xx1-7/25`
`=3+1-7/25`
`=75/25+25/25-7/25`
`=93/25`
Tính
a) \(\dfrac{x}{x-3}+\dfrac{-9}{x^2-3x}\)
b) \(\dfrac{x-5}{x^2-4x+4}:\dfrac{x^2-25}{2x-4}\)
\(\dfrac{x}{x-3}+\dfrac{-9}{x^2-3x}=\dfrac{x^2}{x\left(x-3\right)}+\dfrac{-9}{x\left(x-3\right)}=\dfrac{x^2-9}{x\left(x-3\right)}=\dfrac{\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}=\dfrac{x+3}{x}\)
\(\dfrac{x-5}{x^2-4x+4}:\dfrac{x^2-25}{2x-4}=\dfrac{x-5}{\left(x-2\right)^2}.\dfrac{2\left(x-2\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{2}{\left(x-2\right)\left(x+5\right)}\)
giải các phương trình sau
1, \(\dfrac{5x^2-12}{x^2-1}+\dfrac{3}{x-1}=\dfrac{5x}{x+1}\)
2, \(\dfrac{3}{x-5}-\dfrac{15-3x}{x^2-25}=\dfrac{3}{x+5}\)
3, \(\dfrac{-3}{x-4}-\dfrac{3-5x}{x^2-16}=\dfrac{1}{x+4}\)
1: Ta có: \(\dfrac{5x^2-12}{x^2-1}+\dfrac{3}{x-1}=\dfrac{5x}{x+1}\)
\(\Leftrightarrow\dfrac{5x^2-12}{\left(x-1\right)\left(x+1\right)}+\dfrac{3x+3}{\left(x-1\right)\left(x+1\right)}=\dfrac{5x^2-5x}{\left(x+1\right)\left(x-1\right)}\)
Suy ra: \(5x^2+3x-9=5x^2-5x\)
\(\Leftrightarrow8x=9\)
hay \(x=\dfrac{9}{8}\left(tm\right)\)
2: Ta có: \(\dfrac{3}{x-5}-\dfrac{15-3x}{x^2-25}=\dfrac{3}{x+5}\)
\(\Leftrightarrow\dfrac{3x+15}{\left(x-5\right)\left(x+5\right)}+\dfrac{3x-15}{\left(x-5\right)\left(x+5\right)}=\dfrac{3x-15}{\left(x+5\right)\left(x-5\right)}\)
Suy ra: \(6x=3x-15\)
\(\Leftrightarrow3x=-15\)
hay \(x=-5\left(loại\right)\)
2. ĐKXĐ: $x\neq \pm 5$
PT \(\Leftrightarrow \frac{3}{x-5}+\frac{3x-15}{x^2-25}=\frac{3}{x+5}\)
\(\Leftrightarrow \frac{3}{x-5}+\frac{3(x-5)}{(x-5)(x+5)}=\frac{3}{x+5}\)
\(\Leftrightarrow \frac{3}{x-5}+\frac{3}{x+5}=\frac{3}{x+5}\Leftrightarrow \frac{3}{x-5}=0\) (vô lý)
Vậy pt vô nghiệm.
3. ĐKXĐ: $x\neq \pm 4$
PT \(\Leftrightarrow \frac{-3(x+4)}{(x-4)(x+4)}-\frac{3-5x}{(x-4)(x+4)}=\frac{x-4}{(x-4)(x+4)}\)
\(\Rightarrow -3(x+4)-(3-5x)=x-4\)
\(\Leftrightarrow 2x-15=x-4\Leftrightarrow x=11\) (thỏa mãn)
tìm x biết
a)x-\(\dfrac{3}{7}\)=\(\dfrac{2}{5}.\dfrac{1}{4}\)
b)x+\(\dfrac{4}{5}\)=\(\dfrac{-5}{12}\).\(\dfrac{3}{25}\)
c)\(\dfrac{x}{182}\)=\(\dfrac{-6}{12}\).\(\dfrac{35}{91}\)
a/ \(x-\dfrac{3}{7}=\dfrac{2}{5}\cdot\dfrac{1}{4}\)
\(x-\dfrac{3}{7}=\dfrac{1}{10}\)
\(x=\dfrac{1}{10}+\dfrac{3}{7}=\dfrac{37}{70}\)
Vậy....
b/ \(x+\dfrac{4}{5}=-\dfrac{5}{12}\cdot\dfrac{3}{25}\)
\(x+\dfrac{4}{5}=-\dfrac{1}{20}\)
\(x=-\dfrac{1}{20}-\dfrac{4}{5}=-\dfrac{17}{20}\)
Vậy....
c/ \(\dfrac{x}{182}=-\dfrac{6}{12}\cdot\dfrac{35}{91}\)
\(\dfrac{x}{182}=-\dfrac{5}{26}\)
\(=>x\cdot26=-5\cdot182\)
\(26x=-910\)
\(x=-910:26=-35\)
Vậy....
a) Ta có: \(x-\dfrac{3}{7}=\dfrac{2}{5}\cdot\dfrac{1}{4}\)
\(\Leftrightarrow x-\dfrac{3}{7}=\dfrac{1}{10}\)
\(\Leftrightarrow x=\dfrac{1}{10}+\dfrac{3}{7}=\dfrac{7}{70}+\dfrac{30}{70}\)
hay \(x=\dfrac{37}{70}\)
Vậy: \(x=\dfrac{37}{70}\)
Giải các phương trình sau
a)\(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)
b)\(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=-5\)
a) \(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)
\(\Leftrightarrow\dfrac{x-5}{100}-1+\dfrac{x-4}{101}-1+\dfrac{x-3}{102}-1=\dfrac{x-100}{5}-1+\dfrac{x-101}{4}-1+\dfrac{x-102}{3}-1\)
\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}-\dfrac{x-105}{5}-\dfrac{x-105}{4}-\dfrac{x-105}{3}=0\)
\(\Leftrightarrow\left(x-105\right)\left(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3}\right)=0\)
\(\Leftrightarrow\left(x-105\right)=0;\left(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3}\right)\ne0\)
\(\Leftrightarrow x=105\)
b) \(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=-5\)
\(\Leftrightarrow\dfrac{29-x}{21}+1+\dfrac{27-x}{23}+1+\dfrac{25-x}{25}+1+\dfrac{23-x}{27}+1+\dfrac{21-x}{29}+1=0\)
\(\Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{50-x}{27}+\dfrac{50-x}{29}=0\)
\(\Leftrightarrow\left(50-x\right)\left(\dfrac{1}{29}+\dfrac{1}{27}+\dfrac{1}{25}+\dfrac{1}{23}+\dfrac{1}{21}\right)=0\)
\(\Leftrightarrow50-x=0;\left(\dfrac{1}{29}+\dfrac{1}{27}+\dfrac{1}{25}+\dfrac{1}{23}+\dfrac{1}{21}\right)\ne0\)
\(\Leftrightarrow x=50\)
Tính:
a) \(\dfrac{11}{10}+\dfrac{3}{5}:\dfrac{2}{3}\)
b) \(\dfrac{4}{3}\) + 5 x \(\dfrac{5}{8}\)
c) \(\left(\dfrac{2}{5}+\dfrac{3}{7}\right)x\dfrac{25}{29}\)
d) \(\dfrac{1}{4}x\dfrac{5}{12}+\dfrac{5}{12}x\dfrac{4}{5}\)
a) \(\dfrac{11}{10}+\dfrac{3}{5}:\dfrac{2}{3}=\dfrac{11}{10}+\dfrac{3}{5}\times\dfrac{3}{2}=\dfrac{11}{10}+\dfrac{9}{10}=\dfrac{20}{10}=2\)
b) \(\dfrac{4}{3}+5\times\dfrac{5}{8}=\dfrac{4}{3}+\dfrac{25}{8}=\dfrac{32}{24}+\dfrac{75}{24}=\dfrac{107}{24}\)
c) \(\left(\dfrac{2}{5}+\dfrac{3}{7}\right)\times\dfrac{25}{29}=\left(\dfrac{14}{35}+\dfrac{15}{35}\right)\times\dfrac{25}{39}=\dfrac{29}{35}\times\dfrac{25}{39}=\dfrac{145}{274}\)
d) \(\dfrac{1}{4}\times\dfrac{5}{12}+\dfrac{5}{12}\times\dfrac{4}{5}=\dfrac{5}{12}\times\left(\dfrac{1}{4}+\dfrac{4}{5}\right)=\dfrac{5}{12}\times\dfrac{21}{20}=\dfrac{105}{240}=\dfrac{7}{16}\)
a) \(\dfrac{11}{10}+\dfrac{3}{5}x\dfrac{3}{2}=\dfrac{11}{10}+\dfrac{9}{10}=\dfrac{20}{10}=2\)
b) \(\dfrac{4}{3}+\dfrac{25}{8}=\dfrac{32}{24}+\dfrac{75}{24}=\dfrac{107}{24}\)
c) \(\dfrac{29}{35}x\dfrac{25}{29}=\dfrac{5}{7}\)
\(=\dfrac{5}{12}x\left(\dfrac{1}{4}+\dfrac{4}{5}\right)=\dfrac{5}{12}x\dfrac{21}{20}=\dfrac{7}{16}\)
giải phương trình :
\(\dfrac{80}{x+4}\)+ \(\dfrac{80}{x-4}\) = \(\dfrac{25}{3}\)
\(\Leftrightarrow\dfrac{16}{x+4}+\dfrac{16}{x-4}=\dfrac{5}{3}\)
=>\(\dfrac{16x-64+16x+64}{x^2-16}=\dfrac{5}{3}\)
=>5(x^2-16)=3*32x=96x
=>5x^2-96x-80=0
=>x=20 hoặc x=-4/5
Tim x:
a) \(\dfrac{13+x}{20}=\dfrac{3}{4}\)
b) \(\dfrac{23-x}{25}=\dfrac{4}{5}\)
`(13+x)/20 = 3/4`
`(13+x) xx4=3xx20`
`(13+x)xx4=60`
`13+x=60:4`
`13+x=15`
`x=15-13`
`x=2`
__
`(23-x)/25 =4/5`
`(23-x)xx5=4xx25`
`(23-x)xx5=100`
`23-x=100:5`
`23-x=20`
`x=23-20`
`x=3`
a) \(^{\left(x-\dfrac{2}{3}\right)^2}\)=\(\dfrac{25}{6}\)
b)\(\dfrac{x-2}{4}=\dfrac{5+x}{3}\)
Xem lại đề câu 1 em nhé xem có phải là `25/9` không ?
b) \(\dfrac{x-2}{4}=\dfrac{5+x}{3}\)
=> \(3\left(x-2\right)=4\left(5+x\right)\)
\(3x-6=20+4x\)
\(3x-4x=20+6\)
\(-x=26\)
=> \(x=26\)
Vậy \(x=26\)
Giải
b) \(\dfrac{x-2}{4}=\dfrac{5+x}{3}\)
⇒ \(\left(x-2\right).3=\left(5+x\right).4\)
⇒ \(3x-6=20+4x\)
⇒ \(-6-20=4x-3x\)
⇒ \(x=-26\)