Phân tích đa thưc sthaanhf nhân tử y4-64
Phân tích đa thưc thành nhân tử:
\(=x\left(x-1\right)+y\left(x-1\right)^2=\left(x-1\right)\left[x+y\left(x-1\right)\right]\\ =\left(x-1\right)\left(x+xy-y\right)\)
Phân tích đa thưc thành nhân tử :
x4+2008x2+2007x+2008
\(x^4+2008x^2+2007x+2008\\ =x^4-x+2008\left(x^2+x+1\right)=x\left(x^3-1\right)+2008\left(x^2+x+1\right)=x\left(x-1\right)\left(x^2+x+1\right)+2008\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^2-x+2008\right)\)
Ta có: \(x^4+2008x^2+2007x+2008\)
\(=x^4-x+2008\left(x^2+x+1\right)\)
\(=x\left(x^3-1\right)+2008\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2008\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)
phân tích đa thưc thành nhân tử
x2 - x - 12
tính
4(32 + 1) (34+1)...(364 + 1)
x2-x-12=x2+3x-4x-12=(x2+3x)-(4x+12)=x(x+3)-4(x+3)=(x+3)(x-4)
phân tích đa thưc thành nhân tử
x2 - x - 12
tính
4(32 + 1) (34+1)...(364 + 1)
\(x^2-x-12\)
\(=x^2-x-12\)
\(=\left(x-4\right)\left(x+3\right)\)
64x4+y4 phân tích đa thức thành nhân tử
64x^4+y^4
=64x^4+16x^2y^2+y^4-16x^2y^2
=(8x^2+y^2)^2-(4xy)^2
=(8x^2-4xy+y^2)(8x^2+4xy+y^2)
phân tích đa thức thành nhân tử: x4 +x2y2+y4
x⁴ + x²y² +y⁴
= (x²)² + x²y² + (y²)²
= (x²)² + x²y² + (y²)² + x²y² - x²y²
= (x²)² + 2 x²y² + (y²)² - x²y²
= (x² + y²)²- (xy)²
=(x² + y² + xy)(x² + y² - xy)
Phân tích đa thưc thành nhân tử
x^3+5x^2+3x - 9
x3+5x2+3x-9
=x3-x2+6x2-6x+9x-9
=x2(x-1)+6x(x-1)+9(x-1)
=(x-1)(x2+6x+9)
=(x-1)(x+3)2
x^3+5x^2+3x+9 = x^3+6x^2-x^2+9x-6x-9
= x^2(x-1)+6x(x-1)+9(x-1)
= (x-1)(x^2+6x+9) = (x-1)(x+3)^2
Phân tích các đa thức sau thành nhân tử: c ) x 4 - y 4
x^4-y^4=(x^2-y^2)(x^2+y^2)=(x-y)(x+y)(x^2+y^2)
phân tích đa thức thành nhân tử
a) x4+\(\dfrac{1}{4}\)y8
b) \(\dfrac{1}{4}\)x4+y8
c) 64x4+y4
d) x4+\(\dfrac{1}{64}\)y4
Lời giải:
a.
$=(x^2)^2+(\frac{1}{2}y^4)^2+2.x^2.\frac{1}{2}y^4-x^2y^4$
$=(x^2+\frac{1}{2}y^4)^2-(xy^2)^2$
$=(x^2+\frac{1}{2}y^4-xy^2)(x^2+\frac{1}{2}y^4+xy^2)$
b.
$=(\frac{1}{2}x^2)^2+(y^4)^2+2.\frac{1}{2}x^2.y^4-x^2y^4$
$=(\frac{1}{2}x^2+y^4)^2-(xy^2)^2$
$=(\frac{1}{2}x^2+y^4-xy^2)(\frac{1}{2}x^2+y^4+xy^2)$
c.
$=(8x^2)^2+(y^2)^2+2.8x^2.y^2-16x^2y^2$
$=(8x^2+y^2)^2-(4xy)^2=(8x^2+y^2-4xy)(8x^2+y^2+4xy)$
d.
$=\frac{64x^4+y^4}{64}=\frac{1}{64}(8x^2+y^2-4xy)(8x^2+y^2+4xy)$
c: \(64x^4+y^4\)
\(=64x^4+16x^2y^2+y^4-16x^2y^2\)
\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)
\(=\left(8x^2+y^2-4xy\right)\left(8x^2+y^2+4xy\right)\)