\(\frac{3^2.3^8}{27^3}\)=\(^{3^x}\)
\(\frac{3^2.3^8}{27^3}=3^x\)
Ta có :\(\frac{3^2.3^8}{27^3}=3^x\)
\(\Rightarrow\frac{3^{10}}{\left(3^3\right)^3}=3^x\)
\(\Rightarrow\frac{3^{10}}{3^9}=3^x\)
\(\Rightarrow3^1=3^x\)
\(\Rightarrow x=1\)
Vậy \(x=1\)
\(\frac{3^2.3^8}{27^3}\)=\(\frac{3^{10}}{27^3}\)=\(\frac{3^{10}}{\left(3^3\right)^3}\)=\(\frac{3^{10}}{3^9}\)=3
Mà \(\frac{3^2.3^8}{27^3}\)=3x
\(\Rightarrow\)3=3x
\(\Rightarrow\)x=1
Vậy x=1.
\(\frac{3^2.3^8}{27^3}=3^x\)
Tìm x
\(\frac{3^2.3^8}{27^3}=3^x\)
\(\Leftrightarrow\frac{3^{2+8}}{\left(3^3\right)^3}=3^x\)
\(\Leftrightarrow\frac{3^{10}}{3^9}=3^x\)
\(\Leftrightarrow3=3^x\)
\(\Leftrightarrow x=1\)
\(\frac{3^2.3^8}{27^3}=3^x\)
<=> \(\frac{3^{10}}{3^9}=3^x\)
<=> \(3=3^x\)
<=> x=1
\(\frac{3^2\cdot3^8}{27^3}=3^x\)
\(\Leftrightarrow3^2\cdot3^8=27^3\cdot3^x\)
\(\Leftrightarrow3^{10}=\left(3^3\right)^3\cdot3^x\)
\(\Leftrightarrow3^{10}=3^9\cdot3^x\)
\(\Leftrightarrow3^{10}=3^{9+x}\)
\(\Rightarrow10=9+x\)
\(\Leftrightarrow x=1\)
Tìm x biết \(\frac{3^2.3^8}{27^3}=3^x\)
\(\frac{3^2.3^8}{\left(3^3\right)^3}=3^x\frac{3^{10}}{3^9}=3^x3^{10-9}=3^x3^x=3x=1\)
\(\Rightarrow\frac{3^2.3^8}{3.3^8}=3^x\Rightarrow3=3^x\Rightarrow x=1\)
\(a,\left(-3\right)^{x+3}=-\frac{1}{27}\)
\(b,\left(-6\right)^{2x+2}=\frac{1}{36}\)
\(c,\left(-3\right)^{x+5}=\frac{1}{81}\)
\(d,\left(\frac{1}{9}^x\right)=\left(\frac{1}{27}\right)^6\)
\(e,\left(\frac{4}{9}\right)^x=\left(\frac{8}{27}\right)^6\)
\(f,5^{x+4}-3.5^{x+3}=2.5^{11}\)
\(r,4.3^{x-1}+2.3^{x+2}=4.3^6+2.3^9\)
\(h,\left(\frac{1}{2}-\frac{1}{3}\right).6x+6^{x+2}=6^{10}+6^7\)
nhờ mấy bn giúp mk tối mình nộp rồi
a)\(\left(-3\right)^{x+3}=-\frac{1}{27}\)
\(\left(-3\right)^{x+3}=\left(-\frac{1}{3}\right)^3\)
\(\left(-3\right)^{x+3}=\left(-\frac{3^0}{3^1}\right)^3\)
\(\left(-3\right)^{x+3}=\left(-3^{-1}\right)^3\)
\(\left(-3\right)^{x+3}=\left(-3\right)^{-3}\)
\(\Rightarrow x+3=-3\)
\(\Rightarrow x=-6\)
b)\(\left(-6\right)^{2x+2}=\frac{1}{36}\)
\(\left(-6\right)^{2x+2}=\left(-\frac{1}{6}\right)^2\)
\(\left(-6\right)^{2x+2}=\left(-\frac{6^0}{6^1}\right)^2\)
\(\left(-6\right)^{2x+2}=\left(-6^{-1}\right)^2\)
\(\left(-6\right)^{2x+2}=\left(-6\right)^{-2}\)
\(\Rightarrow2x+2=-2\)
\(\Rightarrow2x=-4\)
\(\Rightarrow x=-2\)
c)\(\left(-3\right)^{x+5}=\frac{1}{81}\)
\(\left(-3\right)^{x+5}=\left(-\frac{1}{3}\right)^4\)
\(\left(-3\right)^{x+5}=\left(-\frac{3^0}{3^1}\right)^4\)
\(\left(-3\right)^{x+5}=\left(-3^{-1}\right)^4\)
\(\left(-3\right)^{x+5}=\left(-3\right)^{-4}\)
\(\Rightarrow x+5=-4\)
\(\Rightarrow x=-9\)
d)\(\left(\frac{1}{9}\right)^x=\left(\frac{1}{27}\right)^6\)
\(\left[\left(\frac{1}{3}\right)^2\right]^x=\left[\left(\frac{1}{3}\right)^3\right]^6\)
\(\left(\frac{1}{3}\right)^{2x}=\left(\frac{1}{3}\right)^{18}\)
\(\Rightarrow2x=18\)
\(\Rightarrow x=9\)
e)\(\left(\frac{4}{9}\right)^x=\left(\frac{8}{27}\right)^6\)
\(\left[\left(\frac{2}{3}\right)^2\right]^x=\left[\left(\frac{2}{3}\right)^3\right]^6\)
\(\left(\frac{2}{3}\right)^{2x}=\left(\frac{2}{3}\right)^{18}\)
\(\Rightarrow2x=18\)
\(\Rightarrow x=9\)
f)\(5^{x+4}-3\cdot5^{x+3}=2\cdot5^{11}\)
\(5^{x+3}\cdot5-3\cdot5^{x+3}=2\cdot5^{11}\)
\(5^{x+3}\left(5-3\right)=2\cdot5^{11}\)
\(5^{x+3}\cdot2=2\cdot5^{11}\)
\(\Rightarrow5^{x+3}=5^{11}\)
\(\Rightarrow x+3=11\)
\(\Rightarrow x=8\)
r)\(4\cdot3^{x-1}+2\cdot3^{x+2}=4\cdot3^6+2\cdot3^9\)
\(4\cdot3^x:3+2\cdot3^x\cdot9=4.3^7:3+2\cdot3^7\cdot9\)
\(3^x\left(4:3+2\cdot9\right)=3^7\left(4:3+2\cdot9\right)\)
\(\Rightarrow3^x=3^7\)
\(\Rightarrow x=7\)
\(\dfrac{3^2.3^8}{27^3}=3^x\)
GIÚP MÌNH VỚI
\(\dfrac{3^2.3^8}{27^3}\)
\(=\dfrac{3^2.3^8}{\left(3^3\right)^3}\)
\(=\dfrac{3^2.3^8}{3^9}\)
\(=\dfrac{3^{10}}{3^9}\)
\(=3^1=3\)
\(3=3x\)
\(x=3:3\)
\(x=1\)
a)
\(\text{( 25 – 2x )³ : 5 – 3^2 = 4^2}\)
\(\text{( 25 – 2x )³ : 5 – 9 = 16}\)
\(\text{( 25 – 2x )³ : 5 = 16 + 9}\)
\(\text{( 25 – 2x )³ : 5 = 25}\)
\(\text{( 25 – 2x )³ = 25 . 5}\)
\(\text{( 25 – 2x )³ = 125}\)
\(\text{( 25 – 2x )³ = 5³}\)
\(\text{25 – 2x = 5}\)
\(\text{2x = 25 – 5}\)
\(\text{2x = 20}\)
\(\text{x = 10}\)
\(\text{________________________________________}\)
b)
\(\text{2.3^x = 10.3^12 + 8.27^4}\)
\(\text{2.3^x = 10.3^12 + 8.(3^3)^4}\)
\(\text{2.3^x = 3^12 . (10+8)}\)
\(\text{2.3^x = 3^12 . 18}\)
\(\text{3^x = 3^12 . 18:2}\)
\(\text{3^x = 3^12 . 9}\)
\(\text{3^x = 3^12 . 3^2}\)
\(\text{3^x = 3^14}\)
\(\text{=> x=14}\)
Tìn x :
2.3 mũ x = 10 . 3 mũ 12 + 8 . 27 mũ 4
\(2.3^x=10.3^{12}+8.27^4\\ \Rightarrow2.3^x=10.3^{12}+8.\left(3^3\right)^4\\ \Rightarrow2.3^x=10.3^{12}+8.3^{12}\\ \Rightarrow2.3^x=3^{12}\left(10+8\right)\\ \Rightarrow2.3^x=3^{12}.18\)
\(=>3^x=3^{12}.18:2\\ \Rightarrow3^x=3^{12}.3^2\\ \Rightarrow3^x=3^{10}\)
Tìm x, biết:
3x.5=278+2.310