các bạn cho mình hỏi cách tìm GTNN và GTLN
các bạn cho tớ xin cách làm GTNN và GTLN của lớp 6
và bạn làm hộ tớ bài này
B= |y-3|+50 có GTNN tìm GTNN đó
nhanh lên nha nhớ làm cho tiết đó
Các bạn chỉ cho mình từng dấu công nhá
+ Nếu mà 1 bài khong phân bietj rõ ra là tìm GTLN và GTNN thì làm sao để biết được câu nào là GTLN câu ào là giá trị nhỏ nhất ạ !
+ Khi mà tìm ra GTLN và GTNN ví dụ như (x+3/2)^2 + 3 >=3 . Thì khi tìm tại x bằng bao nhiêu thì tại sao chỉ lấy mỗi x+3/2 thôi mà không lấy cả (x+3/2)^2 + 3 = 0 ạ ( Số +3) đó tại sao không được cho vào để tìm khi x bằng bao nhiêu ạ
+1 còn tùy vào từng loại cần tìm nếu đơn giản là đa thức bậc 2 thì sử dụng máy tính hoặc cứ tìm thôi ;-;
+2 Vì \(m^2+3\ge3\) thì để dấu = xảy ra tức là : \(m^2+3=3\) \(\Leftrightarrow m^2=0\)
<=> m = 0 .
Các bạn cho mình xin công thức, cách tìm GTNN và GTLN của một biểu thức với, mình học rồi mà không hiểu cái gì hết trơn. Nếu có thì mấy bạn cho mình xin bài tập luôn nha! Hoặc có bạn nào biết link dạy bài đó thì cho mình xin với, thi học kì mà mình gặp mấy bài đó là mình chết chắc! Cảm ơn mấy bạn nhiều.
các bạn giúp mình bài này theo cách làm lớp 11 với ạ. Tìm GTLN, GTNN của:
ta có \(x\in\left[-\frac{\pi}{4};0\right]\Rightarrow2x\in\left[-\frac{\pi}{2},0\right]\Rightarrow sin2x\in\left[-1,0\right]\)
Vậy \(\hept{\begin{cases}GTNN=-1\\GTLN=0\end{cases}}\)
Tìm gtln và gtnn ạ. Mình cần xem cách giải ạ
a.
\(f'\left(x\right)=2cos2x-1=0\Rightarrow cos2x=\dfrac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{3}+k2\pi\\2x=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k\pi\\x=-\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}\\x=-\dfrac{\pi}{6}\end{matrix}\right.\)
Ta có:
\(f\left(-\dfrac{\pi}{2}\right)=0+\dfrac{\pi}{2}=\dfrac{\pi}{2}\)
\(f\left(\dfrac{\pi}{2}\right)=0-\dfrac{\pi}{2}=-\dfrac{\pi}{2}\)
\(f\left(\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}-\dfrac{\pi}{6}\)
\(f\left(-\dfrac{\pi}{6}\right)=-\dfrac{\sqrt{3}}{2}+\dfrac{\pi}{6}\)
So sánh các giá trị trên ta được:
\(f\left(x\right)_{max}=f\left(-\dfrac{\pi}{2}\right)=\dfrac{\pi}{2}\)
\(f\left(x\right)_{min}=f\left(\dfrac{\pi}{2}\right)=-\dfrac{\pi}{2}\)
b.
\(f'\left(x\right)=3-2\sqrt{3}sin2x=0\Rightarrow sin2x=\dfrac{\sqrt{3}}{2}\)
\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{3}+k2\pi\\2x=\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k\pi\\x=\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}\\x=\dfrac{\pi}{3}\end{matrix}\right.\)
Ta có: \(f\left(-\dfrac{\pi}{2}\right)=-\dfrac{3\pi}{2}-\sqrt{3}\)
\(f\left(\dfrac{\pi}{6}\right)=\dfrac{\pi}{2}+\dfrac{\sqrt{3}}{2}\)
\(f\left(\dfrac{\pi}{3}\right)=\pi-\dfrac{\sqrt{3}}{2}\)
\(f\left(\pi\right)=3\pi+\sqrt{3}\)
Từ đó: \(f_{min}=f\left(-\dfrac{\pi}{2}\right)=-\dfrac{3\pi}{2}-\sqrt{3}\)
\(f_{max}=f\left(\pi\right)=3\pi+\sqrt{3}\)
c.
\(f\left(x\right)=sin^3x-\left(1-2sin^2x\right)+sinx+2=sin^3x+2sin^2x+sinx+1\)
Đặt \(sinx=t\Rightarrow t\in\left[-1;1\right]\)
Xét hàm \(f\left(t\right)=t^3+2t^2+t+1\) trên \(\left[-1;1\right]\)
\(f'\left(t\right)=3t^2+4t+1=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-\dfrac{1}{3}\end{matrix}\right.\)
\(f\left(-1\right)=1\) ; \(f\left(-\dfrac{1}{3}\right)=\dfrac{23}{27}\) ; \(f\left(1\right)=5\)
\(\Rightarrow f_{max}=5\) ; \(f_{min}=\dfrac{23}{27}\)
Các bạn chỉ cho mình cánh tìm GTNN vs GTLN của biểu thức vs mình cảm ơn!
tìm GTLN thì đưa về dạng A^2 - k hoặc /A/ -k
GTNN đưa về dạng A^2 + k hoặc /A/ +k
tìm GTLN của x^2 - 5
Tìm GTLN của x^2 +1
đấy là các dạng cơ bản. tuy nhiên khi làm , đề bài có thể lắt léo hơn nhưng về cơ bản cuối cùng phải dưa đc về dạng như tui đã bảo
chỉ giùm mình cách tìm GTNN và GTLN đi m bn
VD như: Tìm GTNN của /x-1/2/
Ta có :
|x - 1/2| > 0
Vậy GTNN của |x - 1/2| = 0 <=> x - 1/2 = 0 <=> x = 1/2
Cho a,b>=0 và 0<=c<=1. Tìm GTNN và GTLN của:
ab+ac+bc+3(a+b+c)
Các bạn giúp mình với!!!
Giúp mình với các bạn ơi: tìm gtln và gtnn nhé :4x^2+4x+2/x+15. (x>0)