Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Khánh Linh

Tìm gtln và gtnn ạ. Mình cần xem cách giải ạ

Nguyễn Việt Lâm
22 tháng 8 2021 lúc 16:37

a.

\(f'\left(x\right)=2cos2x-1=0\Rightarrow cos2x=\dfrac{1}{2}\)

\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{3}+k2\pi\\2x=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k\pi\\x=-\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}\\x=-\dfrac{\pi}{6}\end{matrix}\right.\)

Ta có:

\(f\left(-\dfrac{\pi}{2}\right)=0+\dfrac{\pi}{2}=\dfrac{\pi}{2}\)

\(f\left(\dfrac{\pi}{2}\right)=0-\dfrac{\pi}{2}=-\dfrac{\pi}{2}\)

\(f\left(\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}-\dfrac{\pi}{6}\)

\(f\left(-\dfrac{\pi}{6}\right)=-\dfrac{\sqrt{3}}{2}+\dfrac{\pi}{6}\)

So sánh các giá trị trên ta được:

\(f\left(x\right)_{max}=f\left(-\dfrac{\pi}{2}\right)=\dfrac{\pi}{2}\)

\(f\left(x\right)_{min}=f\left(\dfrac{\pi}{2}\right)=-\dfrac{\pi}{2}\)

Nguyễn Việt Lâm
22 tháng 8 2021 lúc 16:53

b.

\(f'\left(x\right)=3-2\sqrt{3}sin2x=0\Rightarrow sin2x=\dfrac{\sqrt{3}}{2}\)

\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{3}+k2\pi\\2x=\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k\pi\\x=\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}\\x=\dfrac{\pi}{3}\end{matrix}\right.\)

Ta có: \(f\left(-\dfrac{\pi}{2}\right)=-\dfrac{3\pi}{2}-\sqrt{3}\)

\(f\left(\dfrac{\pi}{6}\right)=\dfrac{\pi}{2}+\dfrac{\sqrt{3}}{2}\)

\(f\left(\dfrac{\pi}{3}\right)=\pi-\dfrac{\sqrt{3}}{2}\)

\(f\left(\pi\right)=3\pi+\sqrt{3}\)

Từ đó: \(f_{min}=f\left(-\dfrac{\pi}{2}\right)=-\dfrac{3\pi}{2}-\sqrt{3}\)

\(f_{max}=f\left(\pi\right)=3\pi+\sqrt{3}\)

Nguyễn Việt Lâm
22 tháng 8 2021 lúc 17:19

c.

\(f\left(x\right)=sin^3x-\left(1-2sin^2x\right)+sinx+2=sin^3x+2sin^2x+sinx+1\)

Đặt \(sinx=t\Rightarrow t\in\left[-1;1\right]\)

Xét hàm \(f\left(t\right)=t^3+2t^2+t+1\) trên \(\left[-1;1\right]\)

\(f'\left(t\right)=3t^2+4t+1=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-\dfrac{1}{3}\end{matrix}\right.\)

\(f\left(-1\right)=1\) ; \(f\left(-\dfrac{1}{3}\right)=\dfrac{23}{27}\) ; \(f\left(1\right)=5\)

\(\Rightarrow f_{max}=5\) ; \(f_{min}=\dfrac{23}{27}\)


Các câu hỏi tương tự
thuan truong
Xem chi tiết
Long Hi Hi
Xem chi tiết
Nguyen Tuan Phong
Xem chi tiết
tran truong
Xem chi tiết
Lê Nhật Tân
Xem chi tiết
Lê Hồng Anh
Xem chi tiết
Hà Mi
Xem chi tiết