1/
\(y=\frac{x^2+5}{x-3}\Rightarrow y'=\frac{2x\left(x-3\right)-\left(x^2+5\right)}{\left(x-3\right)^2}=\frac{x^2-6x-5}{\left(x-3\right)^2}< 0\) ; \(\forall x\in\left[3;6\right]\)
Hàm nghịch biến trên đoạn đã cho nên \(y_{min}=y\left(6\right)=\frac{41}{3}\)
2.
\(y=2\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)=2sin\left(x+\frac{\pi}{3}\right)\)
\(\Rightarrow y'=2cos\left(x+\frac{\pi}{3}\right)=0\Rightarrow x+\frac{\pi}{3}=\frac{\pi}{2}+k\pi\)
\(\Rightarrow x=\frac{\pi}{6}+k\pi\Rightarrow x=\frac{\pi}{6}\)
\(y\left(0\right)=\sqrt{3}\) ; \(y\left(\pi\right)=-\sqrt{3}\) ; \(y\left(\frac{\pi}{6}\right)=2\) \(\Rightarrow y_{max}=y\left(\frac{\pi}{6}\right)=2\)
3.
ĐKXĐ: \(x\le1\)
Đặt \(\sqrt{1-x}=t\ge0\Rightarrow x=1-t^2\)
Pt trở thành: \(1-t^2+t=m\Leftrightarrow-t^2+t+1=m\)
Xét \(f\left(t\right)=-t^2+t+1\Rightarrow f'\left(t\right)=-2t+1=0\Rightarrow t=\frac{1}{2}\)
\(f\left(\frac{1}{2}\right)=\frac{11}{8}\Rightarrow f\left(t\right)\le\frac{11}{8}\Rightarrow m\le\frac{11}{8}\)