x3=-125
(1/125 - x3) (x2 + 22.26)=0
( \(\dfrac{1}{125}\) - \(x^3\) ) ( \(x^2\) + 22.66) = 0
\(\left[{}\begin{matrix}\dfrac{1}{125}-x^3=0\\x^2-2^2.6^6=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x^3=\dfrac{1}{125}\\x^2=2^2(6^3)^2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{1}{5}\\x^2=(2.6^3)^2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=432^2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=432\\x=-432\end{matrix}\right.\)
\(x\) ϵ { -432; \(\dfrac{1}{5}\); 432; }
Tìm x
x3+125+(x+5)(x-25)=0
\(x^3\) + 125 + (\(x\) + 5)(\(x\) - 25) = 0
(\(x^3\) + 53) + (\(x\) + 5)(\(x\) - 25) = 0
(\(x\) + 5)(\(x^2\) - 5\(x\) + 25) + (\(x\) + 5)(\(x\) - 25) =0
(\(x\) + 5)(\(x^2\) - 5\(x\) + 25 + \(x\) - 25) = 0
(\(x\) + 5)(\(x^2\) - 4\(x\)) = 0
\(x\)(\(x\) + 5)(\(x\) - 4) = 0
\(\left[{}\begin{matrix}x=0\\x+5=0\\x-4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-5\\x=4\end{matrix}\right.\)
`x^3 + 125 + (x + 5)(x - 25) = 0`
`<=>(x + 5)(x^2 + 5x + 25) + (x + 5)(x - 25) = 0`
`<=>(x + 5)(x^2 + 6x) = 0`
`<=>x(x + 5)(x + 6) = 0`
`<=>x = 0` hoặc `x = -5` hoặc `x=-6`
Sửa:
`x^3 + 125 + (x + 5)(x - 25) = 0`
`<=>(x + 5)(x^2 - 5x + 25) + (x + 5)(x - 25) = 0`
`<=>(x+5)(x^2-4x)=0`
`<=>x(x+5)(x-4)=0`
`<=>x=0` hoặc `x=-5` hoặc `x=4`
Viết các biểu thức sau dưới dạng một tích hai đa thức
a , 27 + x3 b , 64x3 + 0,001 c , 8 - 27x3 d , x3/125 - y3/27
Giúp em
\(a,=\left(3+x\right)\left(9-3x+x^2\right)\\ b,=\left(4x+0,1\right)\left(16x^2-0,4x+0,01\right)\\ c,=\left(2-3x\right)\left(4+6x+9x^2\right)\\ d,=\left(\dfrac{x}{5}-\dfrac{y}{3}\right)\left(\dfrac{x^2}{25}+\dfrac{xy}{15}+\dfrac{y^2}{9}\right)\)
a) \(27+x^3=3^3+x^3=\left(3+x\right)\left(9-3x+x^2\right)\)
b) \(64x^3+0,001=\left(4x\right)^3+\left(\dfrac{1}{10}\right)^3=\left(4x+\dfrac{1}{10}\right)\left(16x^2-\dfrac{4x}{10}+\dfrac{1}{100}\right)\)
a/\(27+x^3=\left(3+x\right)\left(9-3x+x^2\right)\)
b/ \(64x^3+0,001=\left(4x+0,1\right)\left(16x^2-0,4x+0,01\right)\)
c/ \(8-27x^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
d/ \(\dfrac{x^3}{125}-\dfrac{y^3}{27}=\left(\dfrac{x}{5}-\dfrac{y}{3}\right)\left(\dfrac{x^2}{25}+\dfrac{xy}{15}+\dfrac{y^2}{9}\right)\)
(3. 4x - 3).(x3 - 125) = 0
Giúp mình với ạ! ☺
\(\left(3.4^x-3\right).\left(x^3-125\right)=0\\ \rightarrow\left[{}\begin{matrix}3.4^x-3=0\\x^3-125=0\end{matrix}\right.\\ \rightarrow\left[{}\begin{matrix}3.4^x=3\\x^3=125\end{matrix}\right.\)
\(\rightarrow\left[{}\begin{matrix}4^x=1=4^0\\x^3=5^3\end{matrix}\right.\\ \rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
\(\left(3\cdot4^x-3\right)\left(x^3-125\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3\cdot4^x-3=0\\x^3-125=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3\left(4^x-1\right)=0\\x^3-5^3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4^x=1\\x=5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
Nếu \(\sqrt{x}\) + 9 = 4 thì x3 thì bằng:
A.21
B.125
C.343
D.49
\(\sqrt{x}+9=4\)
\(\sqrt{x}=4-9=-5\)
Vì \(\sqrt{x}\) ≥ 0
⇒ Không tồn tại x
Phân tích các đa thức sau thành nhân tử:
b ) x 3 – x 2 – 5 x + 125
b) x3 – x2 – 5x + 125
= (x3 + 125) - (x2 + 5x)
= (x + 5)(x2 - 5x + 25) - x(x + 5)
= (x + 5)(x2 - 5x + 25 - x)
= (x + 5)(x2 - 6x + 25)
Sử dụng hằng đẳng thức để thực hiện phép chia:
a) (2 x 4 - 8 x 2 + 8): (4 - 2 x 2 );
b) (125 - 8 x 3 ):(4x - 10);
c) (1 + 3 x 3 + 3 x 6 + x 9 ):(-1 - x 3 ).
a) Kết quả - x 2 + 2. b) Kết quả − 1 2 ( 4 x 2 + 10 x + 25 ) .
c) Kết quả - ( x 3 + 1 ) 2 .
9)125+150x+60x2+8x3=... 12)x3+125y3
10)y3+12y2+48y+64=...
11)8x3-y3=...
\(9,=\left(5+2x\right)^3\\ 10,=\left(y+4\right)^3\\ 11,=\left(2x-y\right)\left(4x^2+2xy+y^2\right)\\ 12,=\left(x+5y\right)\left(x^2-5xy+25y^2\right)\)
A=x3+15x2+75x+125 với x=-10
B=4x2+12xy+9y2 tại x =1,y =2
\(A=x^3+15x^2+75x+125=\left(x+5\right)^3=-125\)
\(B=4x^2+12xy+9y^2=\left(2x+3y\right)^2=\left(3+6\right)^2=81\)
cau 1 :phan tich da thuc thanh nhan tu a)5x3y-10x2y2+5xy3 b)x3 2y-1-125 2y-1 c)x2-6x-4y2+9 d)x2-xy+2y-2x e)4x2-4y2+4x+1 minh can gap