\(A=\dfrac{x+3}{\sqrt{x}}\). Tìm x để \(A\sqrt{x}+x-1=2\sqrt{3x}+2\sqrt{x-2}\)
A=\(\dfrac{3+2\sqrt{3}}{\sqrt{3}}\)-\(\dfrac{1}{\sqrt{3}-\sqrt{2}}\)+\(\dfrac{2+\sqrt{2}}{\sqrt{2}+1}\)
B=\(\dfrac{\sqrt{x}}{\sqrt{x}+3}\)+\(\dfrac{2\sqrt{x}}{\sqrt{x}-3}\)-\(\dfrac{3x+9}{x-9}\)với x≥0;x≠9
a. Rút gọn biểu thức A và B
b. Tìm x để một phần ba giá trị của A bằng giá trị của biểu thức B
a) Ta có: \(A=\dfrac{3+2\sqrt{3}}{\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{2}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}\)
\(=2+\sqrt{3}-\sqrt{3}-\sqrt{2}+\sqrt{2}\)
=2
Ta có: \(B=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)
\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{3}{\sqrt{x}+3}\)
cho P= (\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\)+ \(\dfrac{\sqrt{x}}{\sqrt{x-3}}\)-\(\dfrac{3x+3}{x-9}\)) : (\(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}\)-1)
a, Rút gọn P
b, Tìm x để P < \(\dfrac{1}{2}\)
c, Tìm GTNN của P
a: Ta có: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{2\sqrt{x}-2-\sqrt{x}+3}\)
\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}\)
\(=\dfrac{-3}{\sqrt{x}+3}\)
(\(\dfrac{2\sqrt{x}}{\sqrt{x}-3}+\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{3x+3}{x-9}\)):(\(\dfrac{2\sqrt{x}-2}{\sqrt{x}+3}-1\))
a) Rút gọn biểu thức
b) Tìm x để Q<\(\dfrac{-1}{2}\)
c) Tìm min Q
\(a,=\dfrac{2x+6\sqrt{x}+x-3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}-3}{\sqrt{x}+3}\\ =\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}+3}{\sqrt{x}-5}\\ =\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-3\right)}\)
a: \(=\dfrac{2x+6\sqrt{x}+x-3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}+3}{\sqrt{x}+1}\)
\(=\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(A=\dfrac{x+3}{\sqrt{x}}\). Tìm x để \(A\sqrt{x}+x-1=2\sqrt{3x}+2\sqrt{x-2}\)
ĐKXĐ : \(x\ge2\)
Với \(A=\dfrac{x+3}{\sqrt{x}}\)
Khi đó \(A\sqrt{x}+x-1=2\sqrt{3x}+2\sqrt{x-2}\)
<=> \(\dfrac{x+3}{\sqrt{x}}.\sqrt{x}+x-1=2\sqrt{3x}+2\sqrt{x-2}\)
<=> \(x+1=\sqrt{3x}+\sqrt{x-2}\)
Đặt \(\sqrt{3x}=a;\sqrt{x-2}=b\left(a>0;b\ge0\right)\)
Khi đó \(a^2-b^2=2\left(x+1\right)\Leftrightarrow\dfrac{a^2-b^2}{2}=x+1\)
PT trở thành \(\dfrac{a^2-b^2}{2}=a+b\)
<=> \(\left(a+b\right)\left(\dfrac{a-b}{2}-1\right)=0\)
<=> \(\dfrac{a-b}{2}-1=0\left(a+b>0\right)\)
<=> a = b + 2
Khi đó \(\sqrt{3x}=\sqrt{x-2}+2\)
<=> \(\left\{{}\begin{matrix}3x=x+2+4\sqrt{x-2}\\x\ge2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=2\sqrt{x-2}\\x\ge2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+1=4\left(x-2\right)\\x\ge2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\x\ge2\end{matrix}\right.\Leftrightarrow x=3\)(tm)
\(\)
Cho biểu thức:
A = (\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\)+\(\dfrac{\sqrt{x}}{\sqrt{x}-3}\)-\(\dfrac{3x+3}{x-9}\)) : (\(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}\) - 1)
a) Rút gọn A
b) Tính giá trị của A khi x = 13 - \(4\sqrt{3}\)
c) Tìm x để A < \(-\dfrac{1}{2}\)
d) Tìm x để A = \(\dfrac{-2}{3}\)
e) Tìm x \(\in\) Z để A nhận giá trị nguyên
f) Tìm GTNN của A
\(a,ĐK:x\ge0;x\ne9\\ A=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\\ A=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\\ b,x=13-4\sqrt{3}=\left(2\sqrt{3}-1\right)^2\\ \Leftrightarrow A=\dfrac{-3}{2\sqrt{3}-1+3}=\dfrac{-3}{2\sqrt{3}+2}=\dfrac{-3\left(2\sqrt{3}-2\right)}{8}\)
\(c,A< -\dfrac{1}{2}\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}+\dfrac{1}{2}< 0\Leftrightarrow\dfrac{\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}< 0\\ \Leftrightarrow\sqrt{x}-3< 0\left(\sqrt{x}+3>0\right)\\ \Leftrightarrow\sqrt{x}< 3\Leftrightarrow0\le x< 9\\ d,A=-\dfrac{2}{3}\Leftrightarrow\dfrac{3}{\sqrt{x}+3}=\dfrac{2}{3}\\ \Leftrightarrow2\sqrt{x}+6=9\\ \Leftrightarrow\sqrt{x}=\dfrac{3}{2}\Leftrightarrow x=\dfrac{9}{4}\left(tm\right)\\ e,\Leftrightarrow\sqrt{x}+3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow\sqrt{x}=0\left(\sqrt{x}\ge0\right)\\ \Leftrightarrow x=0\left(tm\right)\\ f,\sqrt{x}+3\ge3\\ \Leftrightarrow A=-\dfrac{3}{\sqrt{x}+3}\ge-\dfrac{3}{3}=-1\\ A_{min}=-1\Leftrightarrow x=0\)
Cho: \(P=\dfrac{3x+3\sqrt{x}-9}{x+\sqrt{x}-2}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
a, Rút gọn P.
b, Tìm xϵZ để PϵZ.
c, Tìm GTLN của P.
a) \(P=\dfrac{3x+3\sqrt{x}-9}{x+\sqrt{x}-2}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\left(x\ge0,x\ne1\right)\)
\(=\dfrac{3x+3\sqrt{x}-9}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\dfrac{3x+3\sqrt{x}-9+\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{3x+5\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}\)
b) \(P=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}=\dfrac{3\sqrt{x}+6+2}{\sqrt{x}+2}=3+\dfrac{2}{\sqrt{x}+2}\)
Để \(P\in Z\Rightarrow2⋮\sqrt{x}+2\Rightarrow\sqrt{x}+2=2\left(\sqrt{x}+2\ge2\right)\)
\(\Rightarrow x=0\)
c) Ta có: \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+2\ge2\Rightarrow\dfrac{2}{\sqrt{x}+2}\le1\Rightarrow3+\dfrac{2}{\sqrt{x}+2}\le4\)
\(\Rightarrow P_{max}=4\) khi \(x=0\)
\(A=\dfrac{5\sqrt{x}+3x}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-1}{1-\sqrt{x}}+\dfrac{7}{\sqrt{x}+3}\)
Tìm điều kiện của x để A nguyên
Lời giải:
ĐKXĐ: $x\geq 0; x\neq 1$
\(A=\frac{5\sqrt{x}+3x}{(\sqrt{x}-1)(\sqrt{x}+3)}-\frac{(3\sqrt{x}-1)(\sqrt{x}+3)}{(\sqrt{x}-1)(\sqrt{x}+3)}+\frac{7(\sqrt{x}-1)}{(\sqrt{x}+3)(\sqrt{x}-1)}\)
\(=\frac{5\sqrt{x}+3x-(3x+8\sqrt{x}-3)+(7\sqrt{x}-7)}{(\sqrt{x}-1)(\sqrt{x}+3)}=\frac{4(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+3)}=\frac{4}{\sqrt{x}+3}\)
Dễ thấy $A>0$
$\sqrt{x}+3\geq 3\Rightarrow A\leq \frac{4}{3}$
Vậy $0< A\leq \frac{4}{3}$.
$A$ nguyên $\Leftrightarrow A=1\Leftrightarrow \frac{4}{\sqrt{x}+3}=1$
$\Leftrightarrow \sqrt{x}=1\Leftrightarrow x=1$ (trái đkxđ)
Vậy không tồn tại $x$ để $A$ nguyên.
Cho \(\)\(P=\dfrac{3x-2\sqrt{x}-4}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)
a, Rút gọn P.
b, Tính P khi \(\)\(x=4+2\sqrt{3}\)
c, Tìm xϵZ để PϵZ
Bạn vui lòng viết đề bằng công thức toán để được hỗ trợ tốt hơn!
a) Ta có: \(P=\dfrac{3x-2\sqrt{x}-4}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)
\(=\dfrac{3x-2\sqrt{x}-4-x+1-x-4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x-6\sqrt{x}-7}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
* Cho biểu thức:
P=\(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a. Nêu ĐKXĐ
b. Rút gọn P
c. Tìm x để P<\(\dfrac{-1}{2}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)
b) Ta có: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-\dfrac{\sqrt{x}-3}{\sqrt{x}-3}\right)\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{-3}{\sqrt{x}+3}\)
c) Để \(P< -\dfrac{1}{2}\) thì \(P+\dfrac{1}{2}< 0\)
\(\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}+\dfrac{1}{2}< 0\)
\(\Leftrightarrow\dfrac{-6+\sqrt{x}+3}{2\left(\sqrt{x}+3\right)}< 0\)
\(\Leftrightarrow\sqrt{x}-3< 0\)
\(\Leftrightarrow x< 9\)
Kết hợp ĐKXĐ, ta được: \(0\le x< 9\)
Cho \(P=\dfrac{3x-2\sqrt{x}-4}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{2\sqrt{x}+2}{\sqrt{x}-1}\)
a, Rút gọn P.
b, Tính P khi \(x=4+2\sqrt{3}\)
c, Tìm xϵZ để PϵZ
ĐKXĐ: \(x\ge0;x\ne1\)
\(P=\dfrac{3x-2\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{\left(2\sqrt{x}+2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3x-2\sqrt{x}-4-x+1-2x-6\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{-8\sqrt{x}-7}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
Đề bài có vẻ không hợp lý