Định a để hàm số xác định với mọi x>0
\(y=\frac{x-a}{x+a-1}+\sqrt{2x-3a+4}\)
ĐỊnh a để hàm số sau xác định với mọi x > 2
\(y=\sqrt{2x-3a+4}+\dfrac{x-a}{x+a-1}\)
ĐKXĐ: \(\left\{{}\begin{matrix}2x-3a+4\ge0\\x+a-1\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3a-4}{2}\\x\ne-a+1\end{matrix}\right.\)
Hàm xác định với mọi \(x>2\) khi:
\(\left\{{}\begin{matrix}\dfrac{3a-4}{2}< 2\\-a+1\le2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a< \dfrac{8}{3}\\a\ge-1\end{matrix}\right.\) \(\Rightarrow-1\le a< \dfrac{8}{3}\)
Định a để hàm số xác định với mọi x>0
\(y=\sqrt{x-a}+\sqrt{2x-a-1}\)
Để hàm số y xác định thì \(x-a\ge0;2x-a-1\ge0\), với mọi x dương.
Xét hàm số y = x - a, với \(x\ge0.\)
Min y = 0 - a = -a, khi x = 0.
Để \(x-a\ge0,\)với mọi x > 0 thì min \(y=-a\ge0\)hay \(a\le0.\)(1)
Xét hàm số: \(y=2x-a-1\)
Tương tự Min y = -a - 1, khi x = 0.
Để \(2x-a-1\ge0,\)với x > 0 thì min y = - a - 1 \(-a-1\ge0\Leftrightarrow a\le-1\). (2)
Kết hợp điều kiện (1) và (2) ta có:\(a\le-1\)là thỏa mãn đề bài.
Đây là lời giải dựa theo phương pháp " nhìn vấn đề theo quan điểm cực trị " ngoài ra các bạn có thể dùng hàm số đồng biến cũng lập luận gần giống.
Chú ý: x = 0 ta vẫn xét nhưng hiểu được thì các em pahir học qua hàm số liên tục ở lớp 11.
Giá trị của m để hàm số `y=\sqrt{x-m}+\sqrt{2x-m+1}` xác định với mọi `x>0`
Bài 1: Tìm m để các hàm số sau là hàm số bậc nhất
a) y= ( m - 2 )x - \(\dfrac{2}{3}\) b) y= ( 4 - 2022m )x - 2 c) y= \(\sqrt{1-2m}\)x + m - 3
Bài 2: Cho đồ thị hàm số y= -2x + 3
a) Xác định hệ số a,b
b) Các điểm A( -2 ; 7) ; B(\(\sqrt{2}\) ; 6)
c) Tìm tọa độ điểm M thuộc ( d ) có tung độ = 11
d) Tìm tọa độ điểm C thuộc ( d ), biết rằng hoành độ của điểm C gấp 3 tung độ của nó
e) Tìm tọa độ điểm E thuộc ( d ), biết rằng tung độ của điểm E và hoành độ là 2 số đối nhau
tìm m để hàm số sau đây xác định với mọi x thuộc khoảng\(\left(0;+\infty\right)\): \(y=\sqrt{2x-3m+4}+\frac{x-m}{m+x+1}\)
1,Rút gọn
A=(\(\dfrac{2x+1}{x\sqrt{x}+1}-\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\))x(x-\(\dfrac{x-4}{\sqrt{x}-2}\))với x≥0;x≠4
2,Xác định a,b để đồ thị hàm số y=ax+b đi qua điểm A(2;1) vàB(1;2)
\(1,A=\dfrac{2x+1-x}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\left(x-\sqrt{x}-2\right)\\ A=\dfrac{\left(x+1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{\left(x+1\right)\left(\sqrt{x}-2\right)}{x-\sqrt{x}+1}\\ 2,\Leftrightarrow\left\{{}\begin{matrix}2a-b=1\\a-b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=-3\end{matrix}\right.\Leftrightarrow y=-x-3\)
Tìm ĐKXĐ
a,\(y=\sqrt{x+8+2\sqrt{x+7}}+\frac{1}{1-x}\)
b,\(y=\sqrt{x+3+2\sqrt{x+2}}+\sqrt{2-x^2+2\sqrt{1-x^2}}\)
Tìm m để các hàm số sau xác định với mọi x thuộc khoảng \(\left(0;+\infty\right)\)
a,\(y=\sqrt{x-m}+\sqrt{2x-m-1}\)
b,\(y=\sqrt{2x-3m+4}+\frac{x-m}{x+m-1}\)
a.\(y=\sqrt{x-m+2}+\sqrt{x-2m+3}\)
b.\(\sqrt{2x-4m+1}+\frac{x-2}{x-m+2}\)
Tìm m để hàm số x xác định với mọi x \(\in(0,+\infty)\)
Hàm số $y=\sqrt{x-m+2}+\sqrt{x-2m+3}$ xác định khi và chỉ khi
\[\left\{\begin{aligned}&x-m+2\geq 0 \\&x-2m+3\geq
0\end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&x\geq m-2
\\&x\geq 2m-3.\end{aligned}\right. \tag{$*$}\]
Kết hợp hai trường hợp trên, ta được $m\leq \dfrac{3}{2}$ là các giá trị thỏa mãn yêu cầu bài toán.
Tìm m để các hàm số sau đây xác định với mọi x thuộc khoảng\(\left(0;+\infty\right)\).
\(y=\sqrt{2x-3m+4}+\frac{x-m}{x=m-1}\)