tìm 2 số a và b biết \(\frac{a}{b}=\frac{5}{4}\)và a+b =18
2. Tìm 3 số biết.
a) \(\frac{x}{y}=\frac{y}{8}=\frac{z}{9}\) và x + y + z = 72
b) x : y : z = 5 : 4 : 3 và x +y - z = 18
c) \(\frac{a}{5}=\frac{b}{4}=\frac{c}{7}\) và a + 2b +c = 10
d) \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\) và a = 15
e) \(\frac{a}{4}=\frac{b}{5}=\frac{c}{2}\) và a + b = 10
f) \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\) và 2a + b - c = -12
g) \(\frac{a}{5}=\frac{b}{6}=\frac{c}{2}\) và 2a + b - 4c = 24
h) \(\frac{a}{2}=\frac{b}{3}=\frac{c}{-7}\) và abc = 366
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y-z}{5+4-3}=\dfrac{18}{6}=3\)
Do đó: x=15; y=12; z=9
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{5}=\dfrac{b}{4}=\dfrac{c}{7}=\dfrac{a+2b+c}{5+2\cdot4+7}=\dfrac{10}{20}=\dfrac{1}{2}\)
Do đó: a=5/2; b=2; c=7/2
e: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{2}=\dfrac{a+b}{4+5}=\dfrac{10}{9}\)
Do đó: a=40/9; b=50/9; c=20/9
f: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{2a+b-c}{2\cdot2+3-4}=\dfrac{-12}{3}=-4\)
Do đó: a=-8; b=-12; c=-16
bài 1:
tìm 2 số hữu tỉ a và b biết a+b=a nhân b=a/b
bài2
tìm 2 số nguyên x và y biết:
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
Bài 1: Ta có:
a + b = a.b => a = a.b - b = b.(a - 1) (1)
=> a : b = a - 1 = a + b
=> b = -1
Thay b = -1 vào (1) ta có: a = -1.(a - 1) = -a + 1
=> a + a = 1 = 2a
\(\Rightarrow a=\frac{1}{2}\)
Vậy \(a=\frac{1}{2};b=-1\)
b) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1-2y}{8}\)
=> (1 - 2y).x = 40
\(\Rightarrow40⋮1-2y\)
Mà 1 - 2y là số lẻ \(\Rightarrow1-2y\in\left\{1;-1;5;-5\right\}\)
Ta có bảng sau:
1 - 2y | 1 | -1 | 5 | -5 |
x | 40 | -40 | 8 | -8 |
y | 0 | 1 | -2 | 3 |
Vậy các cặp giá trị (x;y) thỏa mãn đề bài là: (40;0) ; (-40;1) ; (8;-2) ; (-8;3)
Các bạn ơi ,giúp mình với .Mình đang cần gấp.RRRRRRRRất gấp!
Bài 1: Tìm a,b,c,d biết a:b:c:d=2:3:4:5 và a+b+c+d= -42
Bài 2: Tìm a,b,c,d biết
a)\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và a+2b-3c
b)\(\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{4}\)và a-b+c= -49
Bài 2: Mình nghĩ câu a là a+2b-3c=-20
a) Ta có: a/2 = b/3 = c/4 = 2b/6 = 3c/12 = a + 2b - 3c/ 2 + 6 - 12 = -20/-4 = 5
a/2 = 5 => a = 2 . 5 = 10
b/3 = 5 => b = 5 . 3 = 15
c/4 = 5 => c = 5 . 4 = 20
Vậy a = 10; b = 15; c = 20
b) Ta có: a/2 = b/3 => a/10 = b/15
b/5 = c/4 => b/15 = c/12
=> a/10 = b/15 = c/12 = a - b + c / 10 - 15 + 12 = -49/7 = -7
a/10 = -7 => a = -7 . 10 = -70
b/15 = -7 => b = -7 . 15 = -105
c/12 = -7 => c = -7 . 12 = -84
Vậy a = -70; b = -105; c = -84.
Bài 1:
Ta có: a:b:c:d = 2:3:4:5
=> a/2 = b/3 = c/4 = d/5 = a+b+c+d/2+3+4+5 = -42/14 = -3
a/2 = -3 => a = -3 . 2 = -6
b/3 = -3 => b = -3 . 3 = -9
c/4 = -3 => c = -3 . 4 = -12
d/5 = -3 => d = -3 . 5 = -15
Vậy a = -6; b = -9; c = -12; d = -15.
Tìm các số a,b,c biết rằng:
\(\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{4}\)và a-b+c= -49
Ta có : \(\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{4}\)
Quy đồng : \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12};a-b+c=-49\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12};\frac{a-b+c}{10-15+12}=\frac{-49}{7}=-7\)
\(\Rightarrow\frac{a}{10}=-7\Rightarrow a=-70\)
\(\Rightarrow\frac{b}{15}=-7\Rightarrow b=-105\)
\(\Rightarrow\frac{c}{12}=-7\Rightarrow c=-84\)
\(\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{4}\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng ..................... :'
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=-7\)
Rồi bạn tự => a ,b , c nha
Theo đề bài, ta có:
\(\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{4}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15};\frac{b}{15}=\frac{c}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{-49}{7}=-7\)
\(\frac{a}{10}=\left(-7\right).10=-70\)\(\frac{b}{15}=\left(-7\right).15=-105\)\(\frac{c}{12}=\left(-7\right).12=-84\)Vậy a=-70,b=-105,c=-84
T mk nhé các bạn ^....^ ^_^
Tìm các số a, b, c biết rằng:
\(\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{4}\) và a- b+ c=147
uk mk đăng lên cho vui với lại để coi đứa mô ngu mới k làm đc
Bài 1 : tìm 2 số tự nhiên a và b biết \(\frac{a}{b}\)= \(\frac{4}{5}\)và [a,b]=140
Bài 2 :tìm 1 số a,b biết a+b=42 và [a,b]=72
Bài 3 tìm 2 số a,b biết a-b=7 và [a,b]=140
Bài 4 :tìm 2 số a.,b biết (a,b)+[a,b]=19
chiều phải nộp r ai giúp mk với mk kick luôn manh lên mấy bạn nhé
1,TÌm GTNN của P biết P=\(\frac{12}{x^2+\left|y-13\right|+14}\)
2,Tìm số nguyên n để P=\(\frac{n+2}{n-5}\)có giá trị lớn nhất
3,Cho n là số tự nhiên có 2 chữ số.Tìm n biết n+4 và 2n đều là số chính phương
4,cho a,b,c khác 0 và a+b+c khác 0 thỏa mãn
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}\)
Tính B=\(\left(1+\frac{b}{a}\right)\cdot\left(1+\frac{a}{c}\right)\cdot\left(1+\frac{c}{b}\right)\)
5, So sánh \(\left(-32\right)^{27}\)và\(\left(-18\right)^{39}\)
6,Tìm GTLN của S=\(\frac{x^2+2016}{x^2+2015}\)
GIẢI DÙM MK VS MK ĐANG CẦN GẤP
MƠN MN TRƯỚC
1,
Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)
\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)
\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)
Dấu "=" xảy ra khi x = 0, y = 13
Vậy Pmin = 6/7 khi x = 0, y = 13
2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)
Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6
3,
Ta có: \(10\le n\le99\)
\(\Rightarrow20\le2n\le198\)
\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)
\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)
\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)
Ta thấy chỉ có 36 là số chính phương
Vậy n = 32
4,
ÁP dụng TCDTSBN ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)
\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)
\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)
Vậy B = 8
5,
Ta so sánh 3227 và 1839
3227 =(25)27 = 2135 < 2156 = (24)39 = 1639 < 1839
Vậy (-32)27 > (-18)39
6, làm tương tự 2
Các bn giúp mk nha
Bài 1: Tìm x biết: \(\frac{44-x}{3}=\frac{x-12}{5}\)
Bài 2: Tìm hai số a,b biết \(\frac{a}{3}=\frac{b}{4}\) và axb= 48
Bài 3: Tìm a,b,c,d
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{d}{9}\) và a+ b+ c+ d= 12
Bài 4: Tìm a,b,c biết
a) \(\frac{a}{3}=\frac{b}{8}=\frac{c}{5}\) và 3a+ b- 2c= 14
b) \(\frac{a}{10}=\frac{b}{6}=\frac{c}{21}\) và 5a+ b- 2c= 28
Các bn cố gắng giúp mk nha mk cần gấp lắm
Bài 1:suy ra 5*(44-x)=3*(x-12)
220-5x=3x-36
-5x-3x=-36-220
-8x =-256
x=32
Bài 2 :Đặt a/3=b/4=k
suy ra a=3k ; b=4k
Ta có a*b=48
suy ra 3k*4k=48
12k =48
k=4
suy ra a=3*4=12
b=4*4 =16
Bài 3: áp dụng tính chất dãy số bằng nhau ta được
a+b+c+d/3+5+7+9 = 12/24=0,5
suy ra a=1,5; b=2,5; c=3,5; d=4,
Tìm x, biết:
a) 60%x + 0,4x + x :3 =2
b)1-\(\left(5\frac{3}{8}+x-7\frac{5}{24}\right):\left(-16\frac{2}{3}\right)\)
c)\(3\frac{1}{4}x-\frac{7}{6}x=\frac{-5}{12}+1\frac{2}{3}\)
Bài 2: Tính:
a) A= \(\frac{-45.58-45.42}{2+4+6+...+16+18}\)
b)1-2-3+4+5-6-7+...+601-602-603+604
b) \(\frac{\left(140\frac{3}{7}-138\frac{5}{12}\right):18\frac{1}{6}}{0,002}\)
Bài 3: Cho A và B, biết:
A=\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\) và B= \(\frac{4}{35}+\frac{4}{63}+\frac{4}{99}+\frac{4}{143}+\frac{4}{195}\)
Hãy so sánh A & B