Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
My Nguyễn
Xem chi tiết
My Nguyễn
Xem chi tiết
My Nguyễn
Xem chi tiết
ngo thi diem
2 tháng 8 2016 lúc 13:45

bản rút gọn biểu thức trên A =\(x-\sqrt{x}+2\)

=\(x-2\sqrt{x}\cdot\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+2\)

\(\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}\)

vì \(\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\)với mọi x

<=> \(\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)voi mọi x

<=> A \(\ge\)7/4

=> min A = 7/4 

dau = xay ra <=> \(\sqrt{x}-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{4}\)

My Nguyễn
Xem chi tiết
My Nguyễn
Xem chi tiết
Phước Nguyễn
6 tháng 8 2016 lúc 19:30

\(ĐKXĐ:\)  \(\hept{\begin{cases}\sqrt{x}-1\ne0\\\sqrt{x}\ge0\\x-\sqrt{x}+1\ne0\end{cases}}\)  \(\Leftrightarrow\)  \(\hept{\begin{cases}x\ne1\\x\ge0\end{cases}}\)   ( vì \(x-\sqrt{x}+1>0\) )

Ta có:

\(A=x-\frac{2x-2\sqrt{x}}{\sqrt{x}-1}+\frac{x\sqrt{x}+1}{x-\sqrt{x}+1}+1=x-\frac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}+\frac{\sqrt{x^3}+1}{x-\sqrt{x}+1}+1\)

\(=x-2\sqrt{x}+\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1=x-2\sqrt{x}+\sqrt{x}+1+1\)

nên  \(A=x-\sqrt{x}+2=x-2.\frac{1}{2}\sqrt{x}+\frac{1}{4}+\frac{7}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)

Vậy,  \(A_{min}=\frac{7}{4}\)  khi  \(x=\frac{1}{4}\)

My Nguyễn
Xem chi tiết
My Nguyễn
Xem chi tiết
My Nguyễn
Xem chi tiết
19.8A Trà My
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 12 2021 lúc 20:31

Bài 1: 

\(A=x^2+6x+9+x^2-10x+25\)

\(=2x^2+4x+34\)

\(=2\left(x^2+2x+17\right)\)

\(=2\left(x+1\right)^2+32>=32\forall x\)

Dấu '=' xảy ra khi x=-1