Giúp e giải chi tiết câu 29 30 đi ạ
Giúp e câu 29 30 giải chi tiết ạ
Hi bạn, câu 29 này mình có cái cách này dùng cho các bài lim khi rơi vào trường hợp vô định thì bạn dùng quy tắc L'Hospital làm cho nhanh với trường hợp các bài trắc nghiệm như thế này
Ở bài 29 này đang rơi vào dạng \(\dfrac{0}{0}\) nên dùng quy tắc L'Hospital được nè. Bạn làm như sau:
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne1\\x\ge-3\end{matrix}\right.\)
Bước 1: Đạo hàm tử mẫu, ta được: \(\dfrac{\dfrac{1}{2}\left(x+3\right)^{-\dfrac{1}{2}}}{1}\)
Bước 2: Thay điểm cần tính giới hạn: (x=1)
ta sẽ được \(\dfrac{1}{4}\)
Vậy \(lim_{x\rightarrow1}\dfrac{\sqrt{x+3}-2}{x-1}=\dfrac{1}{4}\)
\(\Rightarrow a=1;b=4\)
Vậy S=4a-b=0
Giúp e giải chi tiết câu 29 ạ
29.
SMN cân tại S \(\Rightarrow SH\perp MN\) (trung tuyến đồng thời là đường cao trong tam giác cân)
Mà \(\left\{{}\begin{matrix}MN=\left(SMN\right)\cap\left(MNPQ\right)\\\left(SMN\right)\perp\left(MNPQ\right)\end{matrix}\right.\)
\(\Rightarrow SH\perp\left(MNPQ\right)\)
Hay SH là đường cao của chóp
Giúp e giải chi tiết 12 đến 30 đi ạ
Giúp e giải chi tiết câu 5 đi ạ
\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{mx^2-\left(m+3\right)x+3}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(mx-3\right)}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\left(mx-3\right)=m-3\)
\(f\left(1\right)=m^2-15\)
Hàm liên tục tại \(x=1\) khi:
\(m-3=m^2-15\Rightarrow m^2-m-12=0\Rightarrow\left[{}\begin{matrix}m=4\\m=-3\end{matrix}\right.\)
\(4^2+\left(-3\right)^2=25\)
Giúp e giải chi tiết câu 3 đi ạ
\(y'=3x^2-2\)
hệ số góc tiếp tuyến tại điểm có hoành độ \(x_0=-1\) là \(y'\left(-1\right)\)
\(y'\left(-1\right)=3.\left(-1\right)^2-2=1\)
Giúp e giải chi tiết câu 14 đi ạ
14.
A là khẳng định sai, CD không vuông góc SB
(Vì nếu \(CD\perp SB\) (1); do \(SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\) (2)
(1);(2) \(\Rightarrow CD\perp\left(SAB\right)\Rightarrow CD\perp AB\) (vô lý do \(CD||AB\))
Giúp e giải chi tiết câu 6, 5 đi ạ
5.
A là mệnh đề sai, vì các mặt bên của chóp đều luôn tạo với đáy các góc bằng nhau
6.
Do tam giác SAB cân tại S \(\Rightarrow SH\perp AB\) (trung tuyến đồng thời là đường cao)
Mà \(\left\{{}\begin{matrix}AB=\left(SAB\right)\cap\left(ABCD\right)\\\left(SAB\right)\perp\left(ABCD\right)\end{matrix}\right.\)
\(\Rightarrow SH\perp\left(ABCD\right)\)
Hay SH là đường cao của chóp
Giúp e giải câu 24 25 26 chi tiết đi ạ
24.
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\AB\perp BC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)
25.
Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABC\right)\Rightarrow\widehat{SAO}\) là góc giữa SA và (ABC)
\(AO=\dfrac{2}{3}.\dfrac{1.\sqrt{3}}{2}=\dfrac{\sqrt{3}}{2}\)
\(\Rightarrow cos\widehat{SAO}=\dfrac{AO}{SA}=\dfrac{1}{2}\Rightarrow\widehat{SAO}=60^0\)
26.
\(dy=y'dx=\left(x^2\right)'dx=2xdx\)
Giúp e giải chi tiết câu 35 đến 37 đi ạ
\(\lim\limits_{x\rightarrow3}f\left(x\right)=\lim\limits_{x\rightarrow3}\dfrac{\sqrt{x^2+7}-4}{2x-6}=\lim\limits_{x\rightarrow3}\dfrac{x^2-9}{2\left(x-3\right)\left(\sqrt{x^2+7}+4\right)}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(x+3\right)}{2\left(x-3\right)\left(\sqrt{x^2+7}+4\right)}=\lim\limits_{x\rightarrow3}\dfrac{x+3}{2\left(\sqrt{x^2+7}+4\right)}\)
\(=\dfrac{6}{2\left(4+4\right)}=\dfrac{3}{8}\)
\(f\left(3\right)=1-2m\)
Hàm liên tục trên R khi:
\(1-2m=\dfrac{3}{8}\Rightarrow m=\dfrac{5}{16}\in\left(0;1\right)\)