Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trung Hiếu
Xem chi tiết
Neet
22 tháng 9 2016 lúc 22:52

ta có: \(\frac{IA}{ID}+\frac{IB}{IE}+\frac{IC}{IF}=\frac{AD-ID}{ID}+\frac{BE-IE}{IE}+\frac{FC-FI}{FI}\)

=\(\frac{AD}{ID}+\frac{BE}{IE}+\frac{FC}{FI}-3\)

(từ A và I kẻ 2 đường thẳngAH,IK vuông góc vs BC(H,KϵBC) →áp dụng hệ quả  định lý tales :\(\frac{AD}{ID}=\frac{AH}{IK}\)mà AH và IK là 2 đường cao của 2 Δ có chung đáy  là ΔABCvà ΔBIC→\(\frac{AH}{IK}=\frac{SABC}{SBIC}\) ;làm tương tự vs các cạnh còn lại ,ta có:\(\frac{BE}{IE}=\frac{SABC}{SAIC};\frac{FC}{FI}=\frac{SABC}{SAIB}\))(cái này làm ngoài nháp thôi ,típ tục nèo)

=\(\frac{SABC}{SBIC}+\frac{SABC}{SAIC}+\frac{SABC}{SAIB}-3\)

=\(\frac{SAIB+SAIC+SBIC}{SBIC}+\frac{SAIB+SAIC+SBIC}{SAIC}+\frac{SAIB+SAIC+SBIC}{SAIB}-3\)

=\(3+\frac{SAIB}{SBIC}+\frac{SBIC}{SAIB}+\frac{SAIB}{SAIC}+\frac{SAIC}{SAIB}+\frac{SAIC}{SBIC}+\frac{SBIC}{SAIC}-3\)

Áp dụng BĐT coosshi cho 2 số dương ,ta có:

\(\frac{SAIB}{SBIC}+\frac{SBIC}{SAIB}\ge2\sqrt{\frac{SAIB}{SBIC}.\frac{SBIC}{SAIB}=2}\)tương tự ta có:\(\frac{SAIB}{SAIC}+\frac{SAIC}{SAIB}\ge2;\frac{SAIC}{SBIC}+\frac{SBIC}{SAIC}\ge2\)

vậy \(\frac{IA}{ID}+\frac{IB}{IE}+\frac{IC}{FI}\ge3+2+2+2-3=6\left(đfcm\right)\)

Nguyễn Trung Hiếu
Xem chi tiết
Nguyễn Mai Hân
Xem chi tiết
Nhuân Nguyễn
Xem chi tiết
oki pạn
30 tháng 1 2022 lúc 10:21

5. ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)     \(a.b=c.d\)

\(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{\left(a+b\right)^2-2ab}{\left(c+d\right)^2-2cd}\)

Mà a+b = c+ d; ab = cd

=> đfcm

 

Nguyễn Lê Phước Thịnh
30 tháng 1 2022 lúc 11:53

Bài 4: 

a: Ta có: I nằm trên đường trung trực của AD

nên IA=ID

Ta có: I nằm trên đường trung trực của BC

nên IB=IC

b: Xét ΔIAB và ΔIDC có 

IA=ID

\(\widehat{AIB}=\widehat{DIC}\)

IB=IC

Do đó: ΔIAB=ΔIDC

Akai Haruma
30 tháng 1 2022 lúc 13:40

Câu 5:

Đặt $\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk$

Khi đó:

$(\frac{a+b}{c+d})^2=(\frac{bk+b}{dk+d})^2=[\frac{b(k+1)}{d(k+1)}]^2=\frac{b^2}{d^2}(1)$

$\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}(2)$

Từ $(1); (2)\Rightarrow (\frac{a+b}{c+d})^2=\frac{a^2+b^2}{c^2+d^2}$ (đpcm)

Nguyễn Nguyên Anh
Xem chi tiết
Nguyễn Nguyên Anh
5 tháng 2 2022 lúc 9:57

Giúp mk với các bạn ơi

 

Hà Thái
Xem chi tiết
Lê Song Phương
Xem chi tiết
Doãn Thái 	Bảo
25 tháng 2 2022 lúc 16:45
Chịu !!!!!
Khách vãng lai đã xóa
Lê Song Phương
25 tháng 2 2022 lúc 17:01

Đặt \(BC=a;AC=b;AB=c\left(a,b,c>0\right)\)

\(\Delta BCF\)có phân giác trong BI \(\left(I\in CF\right)\)\(\Rightarrow\frac{IF}{IC}=\frac{BF}{BC}\)(1)

\(\Delta ABC\)có phân giác trong CF \(\left(F\in AB\right)\)\(\Rightarrow\frac{BF}{BC}=\frac{AF}{AC}=\frac{BF+AF}{BC+AC}=\frac{AB}{BC+AC}=\frac{c}{a+b}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{IF}{IC}=\frac{c}{a+b}\)

Tương tự, ta có \(\frac{IE}{IB}=\frac{b}{c+a}\)\(\frac{ID}{IA}=\frac{a}{b+c}\)

Từ đó \(\frac{ID}{IA}+\frac{IE}{IB}+\frac{IF}{IC}=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

Ta cần chứng minh \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)với \(a,b,c>0\)

Thật vậy: Ta chứng minh bất đẳng thức phụ \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)với \(x,y,z>0\)

Áp dụng bất đẳng thức Cô-si cho 3 số dương \(x,y,z\), ta có: \(x+y+z\ge3\sqrt[3]{xyz}\)

Tương tự, ta có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\)

Từ đó \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9\)

Vậy bất đẳng thức được chứng minh.

Áp dụng bất đẳng thức trên, ta có: \(\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge9\)

\(\Leftrightarrow2\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge9\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{9}{2}\)

\(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}\ge\frac{9}{2}\)

\(\Leftrightarrow1+\frac{c}{a+b}+1+\frac{b}{c+a}+1+\frac{a}{b+c}\ge\frac{9}{2}\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

\(\Rightarrow\)đpcm

Khách vãng lai đã xóa
Nguyễn Đăng Hà
Xem chi tiết
Ngô Thanh Huyền
Xem chi tiết